BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 35727519)

  • 1. Correction to: Recycling of marble cutting waste additives in fired clay brick structure: a statistical approach to process parameters.
    Erdogmus E; Yaras A; Sutcu M; Gencel O
    Environ Sci Pollut Res Int; 2022 Oct; 29(47):71948. PubMed ID: 35727519
    [No Abstract]   [Full Text] [Related]  

  • 2. Recycling of marble cutting waste additives in fired clay brick structure: a statistical approach to process parameters.
    Erdogmus E; Yaras A; Sutcu M; Gencel O
    Environ Sci Pollut Res Int; 2022 Oct; 29(47):71936-71947. PubMed ID: 35608771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sustainable Use of Marble Waste in Industrial Production of Fired Clay Bricks and Its Employment for Treatment of Flue Gases.
    Ahmad S; Hassan Shah MU; Ullah A; Shah SN; Rehan MS; Khan IA; Ahmad MI
    ACS Omega; 2021 Sep; 6(35):22559-22569. PubMed ID: 34514228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Gypsum Waste Utilization on Properties and Leachability of Fired Clay Brick.
    Hamid NJA; Kadir AA; Hashar NNH; Pietrusiewicz P; Nabiałek M; Wnuk I; Gucwa M; Palutkiewicz P; Hashim AA; Sarani NA; Nio AA; Noor NM; Jez B
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34074057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of kinetics of Cr(VI)-fired brick clay interaction.
    Priyantha N; Bandaranayaka A
    J Hazard Mater; 2011 Apr; 188(1-3):193-7. PubMed ID: 21330054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Management of spent shea waste: An instrumental characterization and valorization in clay bricks construction.
    Adazabra AN; Viruthagiri G; Shanmugam N
    Waste Manag; 2017 Jun; 64():286-304. PubMed ID: 28336335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of marble sludge waste in the manufacture of eco-friendly materials: applying the principles of the Circular Economy.
    Cobo-Ceacero CJ; Cotes-Palomino MT; Martínez-García C; Moreno-Maroto JM; Uceda-Rodríguez M
    Environ Sci Pollut Res Int; 2019 Dec; 26(35):35399-35410. PubMed ID: 31001783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The reuse of waste glass for enhancement of heavy metals immobilization during the introduction of galvanized sludge in brick manufacturing.
    Mao L; Wu Y; Zhang W; Huang Q
    J Environ Manage; 2019 Feb; 231():780-787. PubMed ID: 30415171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A practical proposal for solving the world's cigarette butt problem: Recycling in fired clay bricks.
    Mohajerani A; Kadir AA; Larobina L
    Waste Manag; 2016 Jun; 52():228-44. PubMed ID: 26975623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manufacture of Sustainable Clay Bricks Using Waste from Secondary Aluminum Recycling as Raw Material.
    Bonet-Martínez E; Pérez-Villarejo L; Eliche-Quesada D; Castro E
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30513855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of olive mill waste addition on the properties of porous fired clay bricks using Taguchi method.
    Sutcu M; Ozturk S; Yalamac E; Gencel O
    J Environ Manage; 2016 Oct; 181():185-192. PubMed ID: 27343435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of Cr(VI) species with thermally treated brick clay.
    Priyantha N; Bandaranayaka A
    Environ Sci Pollut Res Int; 2011 Jan; 18(1):75-81. PubMed ID: 20559745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and recycling of textile sludge for energy-efficient brick production in Ethiopia.
    Beshah DA; Tiruye GA; Mekonnen YS
    Environ Sci Pollut Res Int; 2021 Apr; 28(13):16272-16281. PubMed ID: 33387312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recycling of ceramic tiles waste and marble waste in sustainable production of concrete: a review.
    Mangi SA; Raza MS; Khahro SH; Qureshi AS; Kumar R
    Environ Sci Pollut Res Int; 2022 Mar; 29(13):18311-18332. PubMed ID: 35015234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards zero industrial waste: Utilisation of brick dust waste in sustainable construction.
    Kinuthia JM; Nidzam RM
    Waste Manag; 2011 Aug; 31(8):1867-78. PubMed ID: 21550223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of waste glass additions on quality of textile sludge-based bricks.
    Rahman A; Urabe T; Kishimoto N; Mizuhara S
    Environ Technol; 2015; 36(19):2443-50. PubMed ID: 25812619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elucidating the effects of solar panel waste glass substitution on the physical and mechanical characteristics of clay bricks.
    Lin KL; Huang LS; Shie JL; Cheng CJ; Lee CH; Chang TC
    Environ Technol; 2013; 34(1-4):15-24. PubMed ID: 23530311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of Savannah Harbor river sediment as the primary raw material in production of fired brick.
    Mezencevova A; Yeboah NN; Burns SE; Kahn LF; Kurtis KE
    J Environ Manage; 2012 Dec; 113():128-36. PubMed ID: 23017584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of Limestone Waste Addition for Fired Clay Bricks.
    Thalmaier G; Cobȋrzan N; Balog AA; Constantinescu H; Ceclan A; Voinea M; Marinca TF
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reuse of waste glass in building brick production.
    Demir I
    Waste Manag Res; 2009 Sep; 27(6):572-7. PubMed ID: 19423589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.