These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 35727519)

  • 21. Inventorying Toronto's single detached housing stocks to examine the availability of clay brick for urban mining.
    Ergun D; Gorgolewski M
    Waste Manag; 2015 Nov; 45():180-5. PubMed ID: 25912626
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Production of fired construction brick from high sulfate-containing fly ash with boric acid addition.
    Başpinar MS; Kahraman E; Görhan G; Demir I
    Waste Manag Res; 2010 Jan; 28(1):4-10. PubMed ID: 19423597
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of bottom ash from olive pomace combustion in the production of eco-friendly fired clay bricks.
    Eliche-Quesada D; Leite-Costa J
    Waste Manag; 2016 Feb; 48():323-333. PubMed ID: 26653359
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of eco-friendly porous fired clay bricks using pore-forming agents: a review.
    Bories C; Borredon ME; Vedrenne E; Vilarem G
    J Environ Manage; 2014 Oct; 143():186-96. PubMed ID: 24908498
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recycling of marble waste: A review based on strength of concrete containing marble waste.
    Tugrul Tunc E
    J Environ Manage; 2019 Feb; 231():86-97. PubMed ID: 30340136
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recycling of Cigarette Butts in Fired Clay Bricks: A New Laboratory Investigation.
    Kurmus H; Mohajerani A
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32050481
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of Three Amu-Darya Basin Clays in Ceramic Brick Industry and Their Applications with Brick Waste.
    Korpayev S; Bayramov M; Durdyev S; Hamrayev H
    Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885637
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microplastics and pollutants in biosolids have contaminated agricultural soils: An analytical study and a proposal to cease the use of biosolids in farmlands and utilise them in sustainable bricks.
    Mohajerani A; Karabatak B
    Waste Manag; 2020 Apr; 107():252-265. PubMed ID: 32320938
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Utilization potential of silica fume in fired clay bricks.
    Baspinar MS; Demir I; Orhan M
    Waste Manag Res; 2010 Feb; 28(2):149-57. PubMed ID: 19748959
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Screening of heavy metal containing waste types for use as raw material in Arctic clay-based bricks.
    Belmonte LJ; Ottosen LM; Kirkelund GM; Jensen PE; Vestbø AP
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):32831-32843. PubMed ID: 27832436
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Complex Characterization and Behavior of Waste Fired Brick Powder-Portland Cement System.
    Rahhal VF; Trezza MA; Tironi A; Castellano CC; Pavlíková M; Pokorný J; Irassar EF; Jankovský O; Pavlík Z
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31117225
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in the chemical composition of an acidic soil treated with marble quarry and marble cutting wastes.
    Tozsin G; Oztas T; Arol AI; Kalkan E
    Chemosphere; 2015 Nov; 138():664-7. PubMed ID: 26246275
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Utilization of open pit burned household waste ash--a feasibility study in Dhaka.
    Haque MO; Sharif A
    Waste Manag Res; 2014 May; 32(5):397-405. PubMed ID: 24646568
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Environmental risks and mechanical evaluation of recycling red mud in bricks.
    Arroyo F; Luna-Galiano Y; Leiva C; Vilches LF; Fernández-Pereira C
    Environ Res; 2020 Jul; 186():109537. PubMed ID: 32315825
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recycling of sugarcane bagasse ash waste in the production of clay bricks.
    Faria KC; Gurgel RF; Holanda JN
    J Environ Manage; 2012 Jun; 101():7-12. PubMed ID: 22387325
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of correlation between physical properties and ultrasonic pulse velocity of fired clay samples.
    Özkan İ; Yayla Z
    Ultrasonics; 2016 Mar; 66():4-10. PubMed ID: 26725032
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of using arsenic-iron sludge wastes in brick making.
    Hassan KM; Fukushi K; Turikuzzaman K; Moniruzzaman SM
    Waste Manag; 2014 Jun; 34(6):1072-8. PubMed ID: 24129213
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An Experimental and Empirical Study on the Use of Waste Marble Powder in Construction Material.
    Sufian M; Ullah S; Ostrowski KA; Ahmad A; Zia A; Śliwa-Wieczorek K; Siddiq M; Awan AA
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300748
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reduction of Cracks in Marble Appeared at Hydro-Abrasive Jet Cutting Using Taguchi Method.
    Barabas S; Florescu A
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057204
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of Construction Material Using Wastewater: An Application of Circular Economy for Mass Production of Bricks.
    Ghafoor S; Hameed A; Shah SAR; Azab M; Faheem H; Nawaz MF; Iqbal F
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.