These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 35727614)
1. The Drivers of Acceptance of Artificial Intelligence-Powered Care Pathways Among Medical Professionals: Web-Based Survey Study. Cornelissen L; Egher C; van Beek V; Williamson L; Hommes D JMIR Form Res; 2022 Jun; 6(6):e33368. PubMed ID: 35727614 [TBL] [Abstract][Full Text] [Related]
2. Predictors of Health Care Practitioners' Intention to Use AI-Enabled Clinical Decision Support Systems: Meta-Analysis Based on the Unified Theory of Acceptance and Use of Technology. Dingel J; Kleine AK; Cecil J; Sigl AL; Lermer E; Gaube S J Med Internet Res; 2024 Aug; 26():e57224. PubMed ID: 39102675 [TBL] [Abstract][Full Text] [Related]
3. Factors Influencing the Acceptability, Acceptance, and Adoption of Conversational Agents in Health Care: Integrative Review. Wutz M; Hermes M; Winter V; Köberlein-Neu J J Med Internet Res; 2023 Sep; 25():e46548. PubMed ID: 37751279 [TBL] [Abstract][Full Text] [Related]
4. Formative Evaluation of the Acceptance of HIV Prevention Artificial Intelligence Chatbots By Men Who Have Sex With Men in Malaysia: Focus Group Study. Peng ML; Wickersham JA; Altice FL; Shrestha R; Azwa I; Zhou X; Halim MAA; Ikhtiaruddin WM; Tee V; Kamarulzaman A; Ni Z JMIR Form Res; 2022 Oct; 6(10):e42055. PubMed ID: 36201390 [TBL] [Abstract][Full Text] [Related]
5. Theory of trust and acceptance of artificial intelligence technology (TrAAIT): An instrument to assess clinician trust and acceptance of artificial intelligence. Stevens AF; Stetson P J Biomed Inform; 2023 Dec; 148():104550. PubMed ID: 37981107 [TBL] [Abstract][Full Text] [Related]
6. Nursing students' intent to use AI-based healthcare technology: Path analysis using the unified theory of acceptance and use of technology. Kwak Y; Seo YH; Ahn JW Nurse Educ Today; 2022 Dec; 119():105541. PubMed ID: 36116387 [TBL] [Abstract][Full Text] [Related]
7. Trust in and Acceptance of Artificial Intelligence Applications in Medicine: Mixed Methods Study. Shevtsova D; Ahmed A; Boot IWA; Sanges C; Hudecek M; Jacobs JJL; Hort S; Vrijhoef HJM JMIR Hum Factors; 2024 Jan; 11():e47031. PubMed ID: 38231544 [TBL] [Abstract][Full Text] [Related]
8. Attitudes Toward the Adoption of 2 Artificial Intelligence-Enabled Mental Health Tools Among Prospective Psychotherapists: Cross-sectional Study. Kleine AK; Kokje E; Lermer E; Gaube S JMIR Hum Factors; 2023 Jul; 10():e46859. PubMed ID: 37436801 [TBL] [Abstract][Full Text] [Related]
9. Acceptance of Mobile Health Apps for Disease Management Among People With Multiple Sclerosis: Web-Based Survey Study. Apolinário-Hagen J; Menzel M; Hennemann S; Salewski C JMIR Form Res; 2018 Dec; 2(2):e11977. PubMed ID: 30684408 [TBL] [Abstract][Full Text] [Related]
10. Radiation Oncologists' Perceptions of Adopting an Artificial Intelligence-Assisted Contouring Technology: Model Development and Questionnaire Study. Zhai H; Yang X; Xue J; Lavender C; Ye T; Li JB; Xu L; Lin L; Cao W; Sun Y J Med Internet Res; 2021 Sep; 23(9):e27122. PubMed ID: 34591029 [TBL] [Abstract][Full Text] [Related]
12. Persuading Patients Using Rhetoric to Improve Artificial Intelligence Adoption: Experimental Study. Sebastian G; George A; Jackson G J Med Internet Res; 2023 Mar; 25():e41430. PubMed ID: 36912869 [TBL] [Abstract][Full Text] [Related]
13. Psychosocial Factors Affecting Artificial Intelligence Adoption in Health Care in China: Cross-Sectional Study. Ye T; Xue J; He M; Gu J; Lin H; Xu B; Cheng Y J Med Internet Res; 2019 Oct; 21(10):e14316. PubMed ID: 31625950 [TBL] [Abstract][Full Text] [Related]
14. Understanding the factors influencing acceptability of AI in medical imaging domains among healthcare professionals: A scoping review. Hua D; Petrina N; Young N; Cho JG; Poon SK Artif Intell Med; 2024 Jan; 147():102698. PubMed ID: 38184343 [TBL] [Abstract][Full Text] [Related]
15. Identity Threats as a Reason for Resistance to Artificial Intelligence: Survey Study With Medical Students and Professionals. Jussupow E; Spohrer K; Heinzl A JMIR Form Res; 2022 Mar; 6(3):e28750. PubMed ID: 35319465 [TBL] [Abstract][Full Text] [Related]
16. Exploring perceptions of healthcare technologies enabled by artificial intelligence: an online, scenario-based survey. Antes AL; Burrous S; Sisk BA; Schuelke MJ; Keune JD; DuBois JM BMC Med Inform Decis Mak; 2021 Jul; 21(1):221. PubMed ID: 34284756 [TBL] [Abstract][Full Text] [Related]
17. Assessing AI adoption in developing country academia: A trust and privacy-augmented UTAUT framework. Rana MM; Siddiqee MS; Sakib MN; Ahamed MR Heliyon; 2024 Sep; 10(18):e37569. PubMed ID: 39315142 [TBL] [Abstract][Full Text] [Related]
18. The Impact of Performance Expectancy, Workload, Risk, and Satisfaction on Trust in ChatGPT: Cross-Sectional Survey Analysis. Choudhury A; Shamszare H JMIR Hum Factors; 2024 May; 11():e55399. PubMed ID: 38801658 [TBL] [Abstract][Full Text] [Related]
19. Modeling the influence of attitudes, trust, and beliefs on endoscopists' acceptance of artificial intelligence applications in medical practice. Schulz PJ; Lwin MO; Kee KM; Goh WWB; Lam TYT; Sung JJY Front Public Health; 2023; 11():1301563. PubMed ID: 38089040 [TBL] [Abstract][Full Text] [Related]
20. Effect of risk, expectancy, and trust on clinicians' intent to use an artificial intelligence system -- Blood Utilization Calculator. Choudhury A; Asan O; Medow JE Appl Ergon; 2022 May; 101():103708. PubMed ID: 35149301 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]