These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 35727820)
1. Regulation of cyanogenic glucosides in wild and domesticated Eusorghum taxa. Myrans H; Gleadow RM Plant Biol (Stuttg); 2022 Oct; 24(6):1084-1088. PubMed ID: 35727820 [TBL] [Abstract][Full Text] [Related]
2. Nitrogen availability and allocation in sorghum and its wild relatives: Divergent roles for cyanogenic glucosides. Myrans H; Vandegeer RK; Henry RJ; Gleadow RM J Plant Physiol; 2021; 258-259():153393. PubMed ID: 33667954 [TBL] [Abstract][Full Text] [Related]
3. Variation in production of cyanogenic glucosides during early plant development: A comparison of wild and domesticated sorghum. Cowan MF; Blomstedt CK; Møller BL; Henry RJ; Gleadow RM Phytochemistry; 2021 Apr; 184():112645. PubMed ID: 33482417 [TBL] [Abstract][Full Text] [Related]
4. Cyanogenesis in the Cowan M; Møller BL; Norton S; Knudsen C; Crocoll C; Furtado A; Henry R; Blomstedt C; Gleadow RM Genes (Basel); 2022 Jan; 13(1):. PubMed ID: 35052482 [TBL] [Abstract][Full Text] [Related]
5. Biosynthesis and regulation of cyanogenic glycoside production in forage plants. Sun Z; Zhang K; Chen C; Wu Y; Tang Y; Georgiev MI; Zhang X; Lin M; Zhou M Appl Microbiol Biotechnol; 2018 Jan; 102(1):9-16. PubMed ID: 29022076 [TBL] [Abstract][Full Text] [Related]
7. A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species. Pičmanová M; Neilson EH; Motawia MS; Olsen CE; Agerbirk N; Gray CJ; Flitsch S; Meier S; Silvestro D; Jørgensen K; Sánchez-Pérez R; Møller BL; Bjarnholt N Biochem J; 2015 Aug; 469(3):375-89. PubMed ID: 26205491 [TBL] [Abstract][Full Text] [Related]
8. A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production. Blomstedt CK; Gleadow RM; O'Donnell N; Naur P; Jensen K; Laursen T; Olsen CE; Stuart P; Hamill JD; Møller BL; Neale AD Plant Biotechnol J; 2012 Jan; 10(1):54-66. PubMed ID: 21880107 [TBL] [Abstract][Full Text] [Related]
9. Effects of PEG-induced osmotic stress on growth and dhurrin levels of forage sorghum. O'Donnell NH; Møller BL; Neale AD; Hamill JD; Blomstedt CK; Gleadow RM Plant Physiol Biochem; 2013 Dec; 73():83-92. PubMed ID: 24080394 [TBL] [Abstract][Full Text] [Related]
10. Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway. Takos AM; Knudsen C; Lai D; Kannangara R; Mikkelsen L; Motawia MS; Olsen CE; Sato S; Tabata S; Jørgensen K; Møller BL; Rook F Plant J; 2011 Oct; 68(2):273-86. PubMed ID: 21707799 [TBL] [Abstract][Full Text] [Related]
11. Down-Regulation of Pandey AK; Madhu P; Bhat BV Front Nutr; 2019; 6():122. PubMed ID: 31544105 [TBL] [Abstract][Full Text] [Related]
12. Label-free Raman hyperspectral imaging analysis localizes the cyanogenic glucoside dhurrin to the cytoplasm in sorghum cells. Heraud P; Cowan MF; Marzec KM; Møller BL; Blomstedt CK; Gleadow R Sci Rep; 2018 Feb; 8(1):2691. PubMed ID: 29426935 [TBL] [Abstract][Full Text] [Related]
13. Metabolic consequences of knocking out UGT85B1, the gene encoding the glucosyltransferase required for synthesis of dhurrin in Sorghum bicolor (L. Moench). Blomstedt CK; O'Donnell NH; Bjarnholt N; Neale AD; Hamill JD; Møller BL; Gleadow RM Plant Cell Physiol; 2016 Feb; 57(2):373-86. PubMed ID: 26493517 [TBL] [Abstract][Full Text] [Related]
14. Wild Sorghum as a Promising Resource for Crop Improvement. Ananda GKS; Myrans H; Norton SL; Gleadow R; Furtado A; Henry RJ Front Plant Sci; 2020; 11():1108. PubMed ID: 32765575 [No Abstract] [Full Text] [Related]
15. Large-scale genome-wide association study, using historical data, identifies conserved genetic architecture of cyanogenic glucoside content in cassava (Manihot esculenta Crantz) root. Ogbonna AC; Braatz de Andrade LR; Rabbi IY; Mueller LA; Jorge de Oliveira E; Bauchet GJ Plant J; 2021 Feb; 105(3):754-770. PubMed ID: 33164279 [TBL] [Abstract][Full Text] [Related]
16. Drying and processing protocols affect the quantification of cyanogenic glucosides in forage sorghum. Gleadow RM; Møldrup ME; O'Donnell NH; Stuart PN J Sci Food Agric; 2012 Aug; 92(11):2234-8. PubMed ID: 22700371 [TBL] [Abstract][Full Text] [Related]
17. Disruption of the cyanide hydratase gene in Gloeocercospora sorghi increases its sensitivity to the phytoanticipin cyanide but does not affect its pathogenicity on the cyanogenic plant sorghum. Wang P; Sandrock RW; VanEtten HD Fungal Genet Biol; 1999 Nov; 28(2):126-34. PubMed ID: 10587474 [TBL] [Abstract][Full Text] [Related]
18. Transcript profiles of wild and domesticated sorghum under water-stressed conditions and the differential impact on dhurrin metabolism. Ananda GKS; Norton SL; Blomstedt C; Furtado A; Møller BL; Gleadow R; Henry RJ Planta; 2022 Jan; 255(2):51. PubMed ID: 35084593 [TBL] [Abstract][Full Text] [Related]
19. Forward genetics by genome sequencing reveals that rapid cyanide release deters insect herbivory of Sorghum bicolor. Krothapalli K; Buescher EM; Li X; Brown E; Chapple C; Dilkes BP; Tuinstra MR Genetics; 2013 Oct; 195(2):309-18. PubMed ID: 23893483 [TBL] [Abstract][Full Text] [Related]
20. Freeze-induced cyanide toxicity does not maintain the cyanogenesis polymorphism in white clover (Trifolium repens). Kooyers NJ; Hartman Bakken B; Ungerer MC; Olsen KM Am J Bot; 2018 Jul; 105(7):1224-1231. PubMed ID: 30080261 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]