These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35727820)

  • 21. Cyanogenesis in plants and arthropods.
    Zagrobelny M; Bak S; Møller BL
    Phytochemistry; 2008 May; 69(7):1457-68. PubMed ID: 18353406
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plant cyanogenesis of Phaseolus lunatus and its relevance for herbivore-plant interaction: the importance of quantitative data.
    Ballhorn DJ; Lieberei R; Ganzhorn JU
    J Chem Ecol; 2005 Jul; 31(7):1445-73. PubMed ID: 16222786
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Interplay Between Water Limitation, Dhurrin, and Nitrate in the Low-Cyanogenic Sorghum Mutant
    Rosati VC; Blomstedt CK; Møller BL; Garnett T; Gleadow R
    Front Plant Sci; 2019; 10():1458. PubMed ID: 31798611
    [No Abstract]   [Full Text] [Related]  

  • 24. Effects of nitrogen fertilization and drought on hydrocyanic acid accumulation and morpho-physiological parameters of sorghums.
    Shehab AESAE; Guo Y
    J Sci Food Agric; 2021 Jun; 101(8):3355-3365. PubMed ID: 33227149
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dhurrin increases but does not mitigate oxidative stress in droughted Sorghum bicolor.
    Sohail MN; Quinn AA; Blomstedt CK; Gleadow RM
    Planta; 2022 Feb; 255(4):74. PubMed ID: 35226202
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plant tissue analysis as a tool for predicting fertiliser needs for low cyanogenic glucoside levels in cassava roots: An assessment of its possible use.
    Imakumbili MLE; Semu E; Semoka JMR; Abass A; Mkamilo G
    PLoS One; 2020; 15(2):e0228641. PubMed ID: 32053630
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diversification of an ancient theme: hydroxynitrile glucosides.
    Bjarnholt N; Rook F; Motawia MS; Cornett C; Jørgensen C; Olsen CE; Jaroszewski JW; Bak S; Møller BL
    Phytochemistry; 2008 May; 69(7):1507-16. PubMed ID: 18342345
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phylogenetic relationships in the Sorghum genus based on sequencing of the chloroplast and nuclear genes.
    Ananda G; Norton S; Blomstedt C; Furtado A; Møller B; Gleadow R; Henry R
    Plant Genome; 2021 Nov; 14(3):e20123. PubMed ID: 34323394
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The cyanogenic syndrome in rubber tree Hevea brasiliensis: tissue-damage-dependent activation of linamarase and hydroxynitrile lyase accelerates hydrogen cyanide release.
    Kadow D; Voß K; Selmar D; Lieberei R
    Ann Bot; 2012 Jun; 109(7):1253-62. PubMed ID: 22451599
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of Dhurrin Metabolism by Transcriptome and Metabolome Analyses in
    Choi SC; Chung YS; Lee YG; Kang Y; Park YJ; Park SU; Kim C
    Plants (Basel); 2020 Oct; 9(10):. PubMed ID: 33086681
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional diversifications of cyanogenic glucosides.
    Møller BL
    Curr Opin Plant Biol; 2010 Jun; 13(3):338-47. PubMed ID: 20197238
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic screening identifies cyanogenesis-deficient mutants of Lotus japonicus and reveals enzymatic specificity in hydroxynitrile glucoside metabolism.
    Takos A; Lai D; Mikkelsen L; Abou Hachem M; Shelton D; Motawia MS; Olsen CE; Wang TL; Martin C; Rook F
    Plant Cell; 2010 May; 22(5):1605-19. PubMed ID: 20453117
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cyanogenic glucosides in the biological warfare between plants and insects: the Burnet moth-Birdsfoot trefoil model system.
    Zagrobelny M; Møller BL
    Phytochemistry; 2011 Sep; 72(13):1585-92. PubMed ID: 21429539
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The biosynthesis of cyanogenic glucosides in higher plants. N-Hydroxytyrosine as an intermediate in the biosynthesis of dhurrin by Sorghum bicolor (Linn) Moench.
    Møller BL; Conn EE
    J Biol Chem; 1979 Sep; 254(17):8575-83. PubMed ID: 468842
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Allocation of Resources to Cyanogenic Glucosides Does Not Incur a Growth Sacrifice in
    Sohail MN; Blomstedt CK; Gleadow RM
    Plants (Basel); 2020 Dec; 9(12):. PubMed ID: 33348715
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dhurrin metabolism in the developing grain of Sorghum bicolor (L.) Moench investigated by metabolite profiling and novel clustering analyses of time-resolved transcriptomic data.
    Nielsen LJ; Stuart P; Pičmanová M; Rasmussen S; Olsen CE; Harholt J; Møller BL; Bjarnholt N
    BMC Genomics; 2016 Dec; 17(1):1021. PubMed ID: 27964718
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reconstitution of cyanogenesis in barley (Hordeum vulgare L.) and its implications for resistance against the barley powdery mildew fungus.
    Nielsen KA; Hrmova M; Nielsen JN; Forslund K; Ebert S; Olsen CE; Fincher GB; Møller BL
    Planta; 2006 Apr; 223(5):1010-23. PubMed ID: 16307283
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of dhurrin pathway gene expression during Sorghum bicolor development.
    Gleadow RM; McKinley BA; Blomstedt CK; Lamb AC; Møller BL; Mullet JE
    Planta; 2021 Nov; 254(6):119. PubMed ID: 34762174
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transgenic tobacco and Arabidopsis plants expressing the two multifunctional sorghum cytochrome P450 enzymes, CYP79A1 and CYP71E1, are cyanogenic and accumulate metabolites derived from intermediates in Dhurrin biosynthesis.
    Bak S; Olsen CE; Halkier BA; Møller BL
    Plant Physiol; 2000 Aug; 123(4):1437-48. PubMed ID: 10938360
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cyanogenesis in Arthropods: From Chemical Warfare to Nuptial Gifts.
    Zagrobelny M; de Castro ÉCP; Møller BL; Bak S
    Insects; 2018 May; 9(2):. PubMed ID: 29751568
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.