These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Epigenetic change detection and pattern recognition via Bayesian hierarchical hidden Markov models. Wang X; Zang M; Xiao G Stat Med; 2013 Jun; 32(13):2292-307. PubMed ID: 23097332 [TBL] [Abstract][Full Text] [Related]
4. A full Bayesian partition model for identifying hypo- and hyper-methylated loci from single nucleotide resolution sequencing data. Wang H; He C; Kushwaha G; Xu D; Qiu J BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):7. PubMed ID: 26818685 [TBL] [Abstract][Full Text] [Related]
8. Accounting for technical noise in differential expression analysis of single-cell RNA sequencing data. Jia C; Hu Y; Kelly D; Kim J; Li M; Zhang NR Nucleic Acids Res; 2017 Nov; 45(19):10978-10988. PubMed ID: 29036714 [TBL] [Abstract][Full Text] [Related]
9. Integrative analysis of multiple genomic variables using a hierarchical Bayesian model. Schäfer M; Klein HU; Schwender H Bioinformatics; 2017 Oct; 33(20):3220-3227. PubMed ID: 28582573 [TBL] [Abstract][Full Text] [Related]
10. A Bayesian meta-analytic approach for safety signal detection in randomized clinical trials. Odani M; Fukimbara S; Sato T Clin Trials; 2017 Apr; 14(2):192-200. PubMed ID: 28059578 [TBL] [Abstract][Full Text] [Related]
11. Part 1. Statistical Learning Methods for the Effects of Multiple Air Pollution Constituents. Coull BA; Bobb JF; Wellenius GA; Kioumourtzoglou MA; Mittleman MA; Koutrakis P; Godleski JJ Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):5-50. PubMed ID: 26333238 [TBL] [Abstract][Full Text] [Related]
12. Identifying Epigenetic Biomarkers using Maximal Relevance and Minimal Redundancy Based Feature Selection for Multi-Omics Data. Mallik S; Bhadra T; Maulik U IEEE Trans Nanobioscience; 2017 Jan; 16(1):3-10. PubMed ID: 28092570 [TBL] [Abstract][Full Text] [Related]
13. Comparison of Statistical Tests and Power Analysis for Phosphoproteomics Data. Ding LJ; Schlüter HM; Szucs MJ; Ahmad R; Wu Z; Xu W J Proteome Res; 2020 Feb; 19(2):572-582. PubMed ID: 31789524 [TBL] [Abstract][Full Text] [Related]
14. Comparative analysis of methods for detecting interacting loci. Chen L; Yu G; Langefeld CD; Miller DJ; Guy RT; Raghuram J; Yuan X; Herrington DM; Wang Y BMC Genomics; 2011 Jul; 12():344. PubMed ID: 21729295 [TBL] [Abstract][Full Text] [Related]
15. Estimation of disease prevalence, true positive rate, and false positive rate of two screening tests when disease verification is applied on only screen-positives: a hierarchical model using multi-center data. Stock EM; Stamey JD; Sankaranarayanan R; Young DM; Muwonge R; Arbyn M Cancer Epidemiol; 2012 Apr; 36(2):153-60. PubMed ID: 21856264 [TBL] [Abstract][Full Text] [Related]
16. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures? Veturi Y; Ritchie MD Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884 [TBL] [Abstract][Full Text] [Related]
17. Implementation of Bayesian multiple comparison correction in the second-level analysis of fMRI data: With pilot analyses of simulation and real fMRI datasets based on voxelwise inference. Han H Cogn Neurosci; 2020 Jul; 11(3):157-169. PubMed ID: 31855500 [TBL] [Abstract][Full Text] [Related]
18. baredSC: Bayesian approach to retrieve expression distribution of single-cell data. Lopez-Delisle L; Delisle JB BMC Bioinformatics; 2022 Jan; 23(1):36. PubMed ID: 35021985 [TBL] [Abstract][Full Text] [Related]
19. Bayesian genome- and epigenome-wide association studies with gene level dependence. Lock EF; Dunson DB Biometrics; 2017 Sep; 73(3):1018-1028. PubMed ID: 28083869 [TBL] [Abstract][Full Text] [Related]
20. BAGSE: a Bayesian hierarchical model approach for gene set enrichment analysis. Hukku A; Quick C; Luca F; Pique-Regi R; Wen X Bioinformatics; 2020 Mar; 36(6):1689-1695. PubMed ID: 31702789 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]