These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 35727989)

  • 1. Aging can transform single-component protein condensates into multiphase architectures.
    Garaizar A; Espinosa JR; Joseph JA; Krainer G; Shen Y; Knowles TPJ; Collepardo-Guevara R
    Proc Natl Acad Sci U S A; 2022 Jun; 119(26):e2119800119. PubMed ID: 35727989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible Kinetic Trapping of FUS Biomolecular Condensates.
    Chatterjee S; Kan Y; Brzezinski M; Koynov K; Regy RM; Murthy AC; Burke KA; Michels JJ; Mittal J; Fawzi NL; Parekh SH
    Adv Sci (Weinh); 2022 Feb; 9(4):e2104247. PubMed ID: 34862761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-Dependent Material Properties of Aging Biomolecular Condensates from Different Viscoelasticity Measurements in Molecular Dynamics Simulations.
    Tejedor AR; Collepardo-Guevara R; Ramírez J; Espinosa JR
    J Phys Chem B; 2023 May; 127(20):4441-4459. PubMed ID: 37194953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Valency and Binding Affinity Variations Can Regulate the Multilayered Organization of Protein Condensates with Many Components.
    Sanchez-Burgos I; Espinosa JR; Joseph JA; Collepardo-Guevara R
    Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33672806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactants or scaffolds? RNAs of varying lengths control the thermodynamic stability of condensates differently.
    Sanchez-Burgos I; Herriott L; Collepardo-Guevara R; Espinosa JR
    Biophys J; 2023 Jul; 122(14):2973-2987. PubMed ID: 36883003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein structural transitions critically transform the network connectivity and viscoelasticity of RNA-binding protein condensates but RNA can prevent it.
    Tejedor AR; Sanchez-Burgos I; Estevez-Espinosa M; Garaizar A; Collepardo-Guevara R; Ramirez J; Espinosa JR
    Nat Commun; 2022 Sep; 13(1):5717. PubMed ID: 36175408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational Freedom and Topological Confinement of Proteins in Biomolecular Condensates.
    Scholl D; Deniz AA
    J Mol Biol; 2022 Jan; 434(1):167348. PubMed ID: 34767801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Squishy to crusty: Biophysics reveal the molecular details of FUS droplet maturation.
    Sohn EJ; Libich DS
    Structure; 2024 Jul; 32(7):854-855. PubMed ID: 38996511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macromolecular regulators have matching effects on the phase equilibrium and interfacial tension of biomolecular condensates.
    Mazarakos K; Zhou HX
    Protein Sci; 2021 Jul; 30(7):1360-1370. PubMed ID: 33864415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric oligomerization state and sequence patterning can tune multiphase condensate miscibility.
    Rana U; Xu K; Narayanan A; Walls MT; Panagiotopoulos AZ; Avalos JL; Brangwynne CP
    Nat Chem; 2024 Jul; 16(7):1073-1082. PubMed ID: 38383656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of FUS Protein Condensates with an Adapted Coarse-Grained Model.
    Benayad Z; von Bülow S; Stelzl LS; Hummer G
    J Chem Theory Comput; 2021 Jan; 17(1):525-537. PubMed ID: 33307683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase Separation in Mixtures of Prion-Like Low Complexity Domains is Driven by the Interplay of Homotypic and Heterotypic Interactions.
    Farag M; Borcherds WM; Bremer A; Mittag T; Pappu RV
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The liquid-to-solid transition of FUS is promoted by the condensate surface.
    Shen Y; Chen A; Wang W; Shen Y; Ruggeri FS; Aime S; Wang Z; Qamar S; Espinosa JR; Garaizar A; St George-Hyslop P; Collepardo-Guevara R; Weitz DA; Vigolo D; Knowles TPJ
    Proc Natl Acad Sci U S A; 2023 Aug; 120(33):e2301366120. PubMed ID: 37549257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using quantitative reconstitution to investigate multicomponent condensates.
    Currie SL; Rosen MK
    RNA; 2022 Jan; 28(1):27-35. PubMed ID: 34772789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiphase organization is a second phase transition within multi-component biomolecular condensates.
    Mazarakos K; Zhou HX
    J Chem Phys; 2022 May; 156(19):191104. PubMed ID: 35597639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatially non-uniform condensates emerge from dynamically arrested phase separation.
    Erkamp NA; Sneideris T; Ausserwöger H; Qian D; Qamar S; Nixon-Abell J; St George-Hyslop P; Schmit JD; Weitz DA; Knowles TPJ
    Nat Commun; 2023 Feb; 14(1):684. PubMed ID: 36755024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aromatic and arginine content drives multiphasic condensation of protein-RNA mixtures.
    Chew PY; Joseph JA; Collepardo-Guevara R; Reinhardt A
    Biophys J; 2024 Jun; 123(11):1342-1355. PubMed ID: 37408305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Higher-order organization of biomolecular condensates.
    Fare CM; Villani A; Drake LE; Shorter J
    Open Biol; 2021 Jun; 11(6):210137. PubMed ID: 34129784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capillary forces generated by biomolecular condensates.
    Gouveia B; Kim Y; Shaevitz JW; Petry S; Stone HA; Brangwynne CP
    Nature; 2022 Sep; 609(7926):255-264. PubMed ID: 36071192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic interplay between droplet maturation and coalescence modulates shape of aged protein condensates.
    Garaizar A; Espinosa JR; Joseph JA; Collepardo-Guevara R
    Sci Rep; 2022 Mar; 12(1):4390. PubMed ID: 35293386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.