These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 3572824)

  • 1. Transient release of acetylcholine from Torpedo synaptosomes in response to prolonged depolarization.
    Meunier FM; Birman S
    J Physiol (Paris); 1986; 81(4):306-11. PubMed ID: 3572824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation of acetylcholine release from Torpedo synaptosomes in response to prolonged depolarizations.
    Birman S; Meunier FM
    J Physiol; 1985 Nov; 368():293-307. PubMed ID: 3935777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative effects of aluminum and ouabain on synaptosomal choline uptake, acetylcholine release and (Na+/K+)ATPase.
    Silva VS; Nunes MA; Cordeiro JM; Calejo AI; Santos S; Neves P; Sykes A; Morgado F; Dunant Y; Gonçalves PP
    Toxicology; 2007 Jul; 236(3):158-77. PubMed ID: 17560001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium-independent release of acetylcholine from electric organ synaptosomes and its changes by depolarization and cholinergic drugs.
    Dolezal V; Diebler MF; Lazereg S; Israël M; Tucek S
    J Neurochem; 1988 Feb; 50(2):406-13. PubMed ID: 2447238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Agelenopsis aperta venom and FTX, a purified toxin, inhibit acetylcholine release in Torpedo synaptosomes.
    Moulian N; Gaudry-Talarmain YM
    Neuroscience; 1993 Jun; 54(4):1035-41. PubMed ID: 8393536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of lactate on acetylcholine release evoked by various stimuli from Torpedo synaptosomes.
    Gaudry-Talarmain YM
    Eur J Pharmacol; 1986 Oct; 129(3):235-43. PubMed ID: 2430814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between presynaptic membrane potential and acetylcholine release in synaptosomes from Torpedo electric organ.
    Meunier FM
    J Physiol; 1984 Sep; 354():121-37. PubMed ID: 6207289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyposmolarity evokes norepinephrine efflux from synaptosomes by a depolarization- and Ca2+ -dependent exocytotic mechanism.
    Tuz K; Pasantes-Morales H
    Eur J Neurosci; 2005 Oct; 22(7):1636-42. PubMed ID: 16197504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca2+-dependent protein phosphorylation of purely cholinergic Torpedo synaptosomes.
    Michaelson DM; Avissar S
    J Biol Chem; 1979 Dec; 254(24):12542-6. PubMed ID: 387788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opiates inhibit acetylcholine release from Torpedo nerve terminals by blocking Ca2+ influx.
    Michaelson DM; McDowall G; Sarne Y
    J Neurochem; 1984 Sep; 43(3):614-8. PubMed ID: 6431053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rearrangement of intramembrane particles as a possible mechanism for the release of acetylcholine.
    Israël M; Lesbats B; Manaranche R; Morel N; Gulik-Krzywicki T; Dedieu JC
    J Physiol (Paris); 1982; 78(4):348-56. PubMed ID: 6189991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impaired synaptic functions with aging as characterized by decreased calcium influx and acetylcholine release.
    Tanaka Y; Hasegawa A; Ando S
    J Neurosci Res; 1996 Jan; 43(1):63-76. PubMed ID: 8838575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca(2+)-dependent changes of acetylcholine release and IP3 mass in Torpedo cholinergic synaptosomes.
    Carrasco MA; Gaudry-Talarmain YM; Molgo J
    Neurochem Int; 1996 Dec; 29(6):637-43. PubMed ID: 9113131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal characteristics of potassium-stimulated acetylcholine release and inactivation of calcium influx in rat brain synaptosomes.
    Suszkiw JB; O'Leary ME
    J Neurochem; 1983 Sep; 41(3):868-73. PubMed ID: 6875570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential inhibition of the release of endogenous and newly synthesized acetylcholine from Torpedo synaptosomes by presynaptic muscarinic receptors.
    Luz S; Pinchasi I; Michaelson DM
    FEBS Lett; 1983 Nov; 164(1):9-12. PubMed ID: 6653788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Pb2+ and Cd2+ on acetylcholine release and Ca2+ movements in synaptosomes and subcellular fractions from rat brain and Torpedo electric organ.
    Suszkiw J; Toth G; Murawsky M; Cooper GP
    Brain Res; 1984 Dec; 323(1):31-46. PubMed ID: 6525509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation and desensitisation of acetylcholine release by zinc at Torpedo nerve terminals.
    Dunant Y; Loctin F; Vallée JP; Parducz A; Lesbats B; Israël M
    Pflugers Arch; 1996 Sep; 432(5):853-8. PubMed ID: 8772136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous determination by a chemiluminescent method of acetylcholine release and compartmentation in Torpedo electric organ synaptosomes.
    Israël M; Lesbats B
    J Neurochem; 1981 Dec; 37(6):1475-83. PubMed ID: 7038047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Botulinum toxin type A blocks the morphological changes induced by chemical stimulation on the presynaptic membrane of Torpedo synaptosomes.
    Marsal J; Egea G; Solsona C; Rabasseda X; Blasi J
    Proc Natl Acad Sci U S A; 1989 Jan; 86(1):372-6. PubMed ID: 2463625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HDT-1, a new synthetic compound, inhibits glutamate release in rat cerebral cortex nerve terminals (synaptosomes).
    Wang SJ; Chou SH; Kuo YC; Chou SS; Tzeng WF; Leu JY; Huang RF; Liew YF
    Acta Pharmacol Sin; 2008 Nov; 29(11):1289-95. PubMed ID: 18954522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.