These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 35728544)

  • 1. Growth-defense trade-offs in plants.
    He Z; Webster S; He SY
    Curr Biol; 2022 Jun; 32(12):R634-R639. PubMed ID: 35728544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trade-Offs Between Plant Growth and Defense Against Insect Herbivory: An Emerging Mechanistic Synthesis.
    Züst T; Agrawal AA
    Annu Rev Plant Biol; 2017 Apr; 68():513-534. PubMed ID: 28142282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant growth-defense trade-offs are general across interactions with fungal, insect, and mammalian consumers.
    Zaret M; Kinkel L; Borer ET; Seabloom EW
    Ecology; 2024 May; 105(5):e4290. PubMed ID: 38570923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Independent evolution of ancestral and novel defenses in a genus of toxic plants (
    Züst T; Strickler SR; Powell AF; Mabry ME; An H; Mirzaei M; York T; Holland CK; Kumar P; Erb M; Petschenka G; Gómez JM; Perfectti F; Müller C; Pires JC; Mueller LA; Jander G
    Elife; 2020 Apr; 9():. PubMed ID: 32252891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant Growth-Defense Trade-Offs: Molecular Processes Leading to Physiological Changes.
    Figueroa-Macías JP; García YC; Núñez M; Díaz K; Olea AF; Espinoza L
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33445665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endophytic
    Gao Y; Ning Q; Yang Y; Liu Y; Niu S; Hu X; Pan H; Bu Z; Chen N; Guo J; Yu J; Cao L; Qin P; Xing J; Liu B; Liu X; Zhu Y
    mBio; 2021 Aug; 12(4):e0156621. PubMed ID: 34372692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting growth-defence trade-offs and breeding strategies in crops.
    Gao M; Hao Z; Ning Y; He Z
    Plant Biotechnol J; 2024 May; 22(5):1198-1205. PubMed ID: 38410834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroRNA-mediated host defense mechanisms against pathogens and herbivores in rice: balancing gains from genetic resistance with trade-offs to productivity potential.
    Kumar K; Mandal SN; Neelam K; de Los Reyes BG
    BMC Plant Biol; 2022 Jul; 22(1):351. PubMed ID: 35850632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insects-plants-pathogens: Toxicity, dependence and defense dynamics.
    Noman A; Aqeel M; Islam W; Khalid N; Akhtar N; Qasim M; Yasin G; Hashem M; Alamri S; Al-Zoubi OM; Jalees MM; Al-Sadi A
    Toxicon; 2021 Jul; 197():87-98. PubMed ID: 33848517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of biotic stresses on the Brassicaceae family and opportunities for crop improvement by exploiting genotyping traits.
    Das Laha S; Kundu A; Podder S
    Planta; 2024 Mar; 259(5):97. PubMed ID: 38520529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The costs of anti-herbivore defense traits in agricultural crop plants: a case study involving leafhoppers and trichomes.
    Kaplan I; Dively GP; Denno RF
    Ecol Appl; 2009 Jun; 19(4):864-72. PubMed ID: 19544730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoupled dimensions of leaf economic and anti-herbivore defense strategies in a tropical canopy tree community.
    Chauvin KM; Asner GP; Martin RE; Kress WJ; Wright SJ; Field CB
    Oecologia; 2018 Mar; 186(3):765-782. PubMed ID: 29302802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Costs of defense and a test of the carbon-nutrient balance and growth-differentiation balance hypotheses for two co-occurring classes of plant defense.
    Massad TJ; Dyer LA; Vega C G
    PLoS One; 2012; 7(10):e47554. PubMed ID: 23115654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the molecular mechanisms of trade-offs between plant growth and immunity.
    Wang J; Long X; Chern M; Chen X
    Sci China Life Sci; 2021 Feb; 64(2):234-241. PubMed ID: 32710363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insect pathogens as biological control agents: Back to the future.
    Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS
    J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Into a dilemma of plants: the antagonism between chemical defenses and growth.
    Sestari I; Campos ML
    Plant Mol Biol; 2022 Jul; 109(4-5):469-482. PubMed ID: 34843032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recalculating growth and defense strategies under competition: key roles of photoreceptors and jasmonates.
    Ballaré CL; Austin AT
    J Exp Bot; 2019 Jul; 70(13):3425-3434. PubMed ID: 31099390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silicon-mediated plant defense against pathogens and insect pests.
    Islam W; Tayyab M; Khalil F; Hua Z; Huang Z; Chen HYH
    Pestic Biochem Physiol; 2020 Sep; 168():104641. PubMed ID: 32711774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life History Variation as a Model for Understanding Trade-Offs in Plant-Environment Interactions.
    Lundgren MR; Des Marais DL
    Curr Biol; 2020 Feb; 30(4):R180-R189. PubMed ID: 32097648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing Crops for Biocontrol of Pests and Disease.
    Stenberg JA; Heil M; Åhman I; Björkman C
    Trends Plant Sci; 2015 Nov; 20(11):698-712. PubMed ID: 26447042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.