These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 35728581)
1. Utility of U-Net for the objective segmentation of the fibroglandular tissue region on clinical digital mammograms. Yamamuro M; Asai Y; Hashimoto N; Yasuda N; Kimura H; Yamada T; Nemoto M; Kimura Y; Handa H; Yoshida H; Abe K; Tada M; Habe H; Nagaoka T; Nin S; Ishii K; Kondo Y Biomed Phys Eng Express; 2022 Jun; 8(4):. PubMed ID: 35728581 [TBL] [Abstract][Full Text] [Related]
2. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation. Keller BM; Nathan DL; Wang Y; Zheng Y; Gee JC; Conant EF; Kontos D Med Phys; 2012 Aug; 39(8):4903-17. PubMed ID: 22894417 [TBL] [Abstract][Full Text] [Related]
3. Development of U-Net Breast Density Segmentation Method for Fat-Sat MR Images Using Transfer Learning Based on Non-Fat-Sat Model. Zhang Y; Chan S; Chen JH; Chang KT; Lin CY; Pan HB; Lin WC; Kwong T; Parajuli R; Mehta RS; Chien SH; Su MY J Digit Imaging; 2021 Aug; 34(4):877-887. PubMed ID: 34244879 [TBL] [Abstract][Full Text] [Related]
4. Automated mammographic breast density estimation using a fully convolutional network. Lee J; Nishikawa RM Med Phys; 2018 Mar; 45(3):1178-1190. PubMed ID: 29363774 [TBL] [Abstract][Full Text] [Related]
5. Area-based breast percentage density estimation in mammograms using weight-adaptive multitask learning. Gudhe NR; Behravan H; Sudah M; Okuma H; Vanninen R; Kosma VM; Mannermaa A Sci Rep; 2022 Jul; 12(1):12060. PubMed ID: 35835933 [TBL] [Abstract][Full Text] [Related]
6. Using deep learning to segment breast and fibroglandular tissue in MRI volumes. Dalmış MU; Litjens G; Holland K; Setio A; Mann R; Karssemeijer N; Gubern-Mérida A Med Phys; 2017 Feb; 44(2):533-546. PubMed ID: 28035663 [TBL] [Abstract][Full Text] [Related]
7. An investigation of the effect of fat suppression and dimensionality on the accuracy of breast MRI segmentation using U-nets. Fashandi H; Kuling G; Lu Y; Wu H; Martel AL Med Phys; 2019 Mar; 46(3):1230-1244. PubMed ID: 30609062 [TBL] [Abstract][Full Text] [Related]
8. Automated whole breast segmentation for hand-held ultrasound with position information: Application to breast density estimation. Chang JF; Huang CS; Chang RF Comput Methods Programs Biomed; 2020 Dec; 197():105727. PubMed ID: 32916544 [TBL] [Abstract][Full Text] [Related]
9. A deep learning system to obtain the optimal parameters for a threshold-based breast and dense tissue segmentation. Pérez-Benito FJ; Signol F; Perez-Cortes JC; Fuster-Baggetto A; Pollan M; Pérez-Gómez B; Salas-Trejo D; Casals M; Martínez I; LLobet R Comput Methods Programs Biomed; 2020 Oct; 195():105668. PubMed ID: 32755754 [TBL] [Abstract][Full Text] [Related]
10. Automatic Breast and Fibroglandular Tissue Segmentation in Breast MRI Using Deep Learning by a Fully-Convolutional Residual Neural Network U-Net. Zhang Y; Chen JH; Chang KT; Park VY; Kim MJ; Chan S; Chang P; Chow D; Luk A; Kwong T; Su MY Acad Radiol; 2019 Nov; 26(11):1526-1535. PubMed ID: 30713130 [TBL] [Abstract][Full Text] [Related]
11. Correlation between mammographic density and volumetric fibroglandular tissue estimated on breast MR images. Wei J; Chan HP; Helvie MA; Roubidoux MA; Sahiner B; Hadjiiski LM; Zhou C; Paquerault S; Chenevert T; Goodsitt MM Med Phys; 2004 Apr; 31(4):933-42. PubMed ID: 15125012 [TBL] [Abstract][Full Text] [Related]
12. Automated fibroglandular tissue segmentation in breast MRI using generative adversarial networks. Ma X; Wang J; Zheng X; Liu Z; Long W; Zhang Y; Wei J; Lu Y Phys Med Biol; 2020 May; 65(10):105006. PubMed ID: 32155611 [TBL] [Abstract][Full Text] [Related]
13. Unsupervised domain adaptation for the segmentation of breast tissue in mammography images. Ryan F; Román KL; Gerbolés BZ; Rebescher KM; Txurio MS; Ugarte RC; González MJG; Oliver IM Comput Methods Programs Biomed; 2021 Nov; 211():106368. PubMed ID: 34537490 [TBL] [Abstract][Full Text] [Related]
15. Geometry-Based Pectoral Muscle Segmentation From MLO Mammogram Views. Taghanaki SA; Liu Y; Miles B; Hamarneh G IEEE Trans Biomed Eng; 2017 Nov; 64(11):2662-2671. PubMed ID: 28129144 [TBL] [Abstract][Full Text] [Related]
16. Breast Tissue Organisation and its Association with Breast Cancer Risk. Ali MA; Czene K; Eriksson L; Hall P; Humphreys K Breast Cancer Res; 2017 Sep; 19(1):103. PubMed ID: 28877713 [TBL] [Abstract][Full Text] [Related]
17. Segmentation of whole breast and fibroglandular tissue using nnU-Net in dynamic contrast enhanced MR images. Huo L; Hu X; Xiao Q; Gu Y; Chu X; Jiang L Magn Reson Imaging; 2021 Oct; 82():31-41. PubMed ID: 34147598 [TBL] [Abstract][Full Text] [Related]
18. Automated Breast Density Computation in Digital Mammography and Digital Breast Tomosynthesis: Influence on Mean Glandular Dose and BIRADS Density Categorization. Castillo-García M; Chevalier M; Garayoa J; Rodriguez-Ruiz A; García-Pinto D; Valverde J Acad Radiol; 2017 Jul; 24(7):802-810. PubMed ID: 28214227 [TBL] [Abstract][Full Text] [Related]
19. Global parenchymal texture features based on histograms of oriented gradients improve cancer development risk estimation from healthy breasts. Pérez-Benito FJ; Signol F; Pérez-Cortés JC; Pollán M; Pérez-Gómez B; Salas-Trejo D; Casals M; Martínez I; LLobet R Comput Methods Programs Biomed; 2019 Aug; 177():123-132. PubMed ID: 31319940 [TBL] [Abstract][Full Text] [Related]
20. Fatty and fibroglandular tissue volumes in the breasts of women 20-83 years old: comparison of X-ray mammography and computer-assisted MR imaging. Lee NA; Rusinek H; Weinreb J; Chandra R; Toth H; Singer C; Newstead G AJR Am J Roentgenol; 1997 Feb; 168(2):501-6. PubMed ID: 9016235 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]