These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 35728581)
21. Optimization of volumetric breast density estimation in digital mammograms. Holland K; Gubern-Mérida A; Mann RM; Karssemeijer N Phys Med Biol; 2017 May; 62(9):3779-3797. PubMed ID: 28230532 [TBL] [Abstract][Full Text] [Related]
22. Fibroglandular tissue distribution in the breast during mammography and tomosynthesis based on breast CT data: A patient-based characterization of the breast parenchyma. Fedon C; Caballo M; García E; Diaz O; Boone JM; Dance DR; Sechopoulos I Med Phys; 2021 Mar; 48(3):1436-1447. PubMed ID: 33452822 [TBL] [Abstract][Full Text] [Related]
23. Personalized estimates of radiation dose from dedicated breast CT in a diagnostic population and comparison with diagnostic mammography. Vedantham S; Shi L; Karellas A; O'Connell AM; Conover DL Phys Med Biol; 2013 Nov; 58(22):7921-36. PubMed ID: 24165162 [TBL] [Abstract][Full Text] [Related]
24. Factors affecting the rate of false positive marks in CAD in full-field digital mammography. Engelken F; Bremme R; Bick U; Hammann-Kloss S; Fallenberg EM Eur J Radiol; 2012 Aug; 81(8):e844-8. PubMed ID: 22647420 [TBL] [Abstract][Full Text] [Related]
25. SCU-Net: A deep learning method for segmentation and quantification of breast arterial calcifications on mammograms. Guo X; O'Neill WC; Vey B; Yang TC; Kim TJ; Ghassemi M; Pan I; Gichoya JW; Trivedi H; Banerjee I Med Phys; 2021 Oct; 48(10):5851-5861. PubMed ID: 34328661 [TBL] [Abstract][Full Text] [Related]
26. Computerized image analysis: estimation of breast density on mammograms. Zhou C; Chan HP; Petrick N; Helvie MA; Goodsitt MM; Sahiner B; Hadjiiski LM Med Phys; 2001 Jun; 28(6):1056-69. PubMed ID: 11439475 [TBL] [Abstract][Full Text] [Related]
27. Automated fibroglandular tissue segmentation and volumetric density estimation in breast MRI using an atlas-aided fuzzy C-means method. Wu S; Weinstein SP; Conant EF; Kontos D Med Phys; 2013 Dec; 40(12):122302. PubMed ID: 24320533 [TBL] [Abstract][Full Text] [Related]
28. Breast Dense Tissue Segmentation with Noisy Labels: A Hybrid Threshold-Based and Mask-Based Approach. Larroza A; Pérez-Benito FJ; Perez-Cortes JC; Román M; Pollán M; Pérez-Gómez B; Salas-Trejo D; Casals M; Llobet R Diagnostics (Basel); 2022 Jul; 12(8):. PubMed ID: 36010173 [TBL] [Abstract][Full Text] [Related]
29. Volumetric breast composition analysis: reproducibility of breast percent density and fibroglandular tissue volume measurements in serial mammograms. Engelken F; Singh JM; Fallenberg EM; Bick U; Böttcher J; Renz DM Acta Radiol; 2014 Feb; 55(1):32-8. PubMed ID: 23878356 [TBL] [Abstract][Full Text] [Related]
30. Knowledge-based and deep learning-based automated chest wall segmentation in magnetic resonance images of extremely dense breasts. Verburg E; Wolterink JM; de Waard SN; Išgum I; van Gils CH; Veldhuis WB; Gilhuijs KGA Med Phys; 2019 Oct; 46(10):4405-4416. PubMed ID: 31274194 [TBL] [Abstract][Full Text] [Related]
31. A deep learning framework to classify breast density with noisy labels regularization. Lopez-Almazan H; Javier Pérez-Benito F; Larroza A; Perez-Cortes JC; Pollan M; Perez-Gomez B; Salas Trejo D; Casals M; Llobet R Comput Methods Programs Biomed; 2022 Jun; 221():106885. PubMed ID: 35594581 [TBL] [Abstract][Full Text] [Related]
32. Automated Volumetric Mammographic Breast Density Measurements May Underestimate Percent Breast Density for High-density Breasts. Rahbar K; Gubern-Merida A; Patrie JT; Harvey JA Acad Radiol; 2017 Dec; 24(12):1561-1569. PubMed ID: 28754209 [TBL] [Abstract][Full Text] [Related]
33. Adaptive multi-cluster fuzzy C-means segmentation of breast parenchymal tissue in digital mammography. Keller B; Nathan D; Wang Y; Zheng Y; Gee J; Conant E; Kontos D Med Image Comput Comput Assist Interv; 2011; 14(Pt 3):562-9. PubMed ID: 22003744 [TBL] [Abstract][Full Text] [Related]
34. Updated breast CT dose coefficients (DgN Hernandez AM; Becker AE; Boone JM Med Phys; 2019 Mar; 46(3):1455-1466. PubMed ID: 30661250 [TBL] [Abstract][Full Text] [Related]
35. Detection of mass regions in mammograms by bilateral analysis adapted to breast density using similarity indexes and convolutional neural networks. Bandeira Diniz JO; Bandeira Diniz PH; Azevedo Valente TL; Corrêa Silva A; de Paiva AC; Gattass M Comput Methods Programs Biomed; 2018 Mar; 156():191-207. PubMed ID: 29428071 [TBL] [Abstract][Full Text] [Related]
36. Automated pectoral muscle identification on MLO-view mammograms: Comparison of deep neural network to conventional computer vision. Ma X; Wei J; Zhou C; Helvie MA; Chan HP; Hadjiiski LM; Lu Y Med Phys; 2019 May; 46(5):2103-2114. PubMed ID: 30771257 [TBL] [Abstract][Full Text] [Related]
37. Dataset of patient-derived digital breast phantoms for in silico studies in breast computed tomography, digital breast tomosynthesis, and digital mammography. Sarno A; Mettivier G; di Franco F; Varallo A; Bliznakova K; Hernandez AM; Boone JM; Russo P Med Phys; 2021 May; 48(5):2682-2693. PubMed ID: 33683711 [TBL] [Abstract][Full Text] [Related]
38. Morphological Area Gradient: System-independent Dense Tissue Segmentation in Mammography Images. Torres GF; Sassi A; Arponen O; Holli-Helenius K; Laaperi AL; Rinta-Kiikka I; Kamarainen J; Pertuz S Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4855-4858. PubMed ID: 31946948 [TBL] [Abstract][Full Text] [Related]
39. A robust method for segmenting pectoral muscle in mediolateral oblique (MLO) mammograms. Yin K; Yan S; Song C; Zheng B Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):237-248. PubMed ID: 30288698 [TBL] [Abstract][Full Text] [Related]
40. An unsupervised automatic segmentation algorithm for breast tissue classification of dedicated breast computed tomography images. Caballo M; Boone JM; Mann R; Sechopoulos I Med Phys; 2018 Jun; 45(6):2542-2559. PubMed ID: 29676025 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]