These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 357287)
41. Lee HS; Kim Y J Microbiol Biotechnol; 2017 Feb; 27(2):395-404. PubMed ID: 28100900 [TBL] [Abstract][Full Text] [Related]
42. The Paralogous Transcription Factors Stp1 and Stp2 of Candida albicans Have Distinct Functions in Nutrient Acquisition and Host Interaction. Miramón P; Pountain AW; van Hoof A; Lorenz MC Infect Immun; 2020 Apr; 88(5):. PubMed ID: 32094252 [TBL] [Abstract][Full Text] [Related]
43. Effects of 5-fluorocytosine on protein synthesis and amino acid pool in Candida albicans. Polak A Sabouraudia; 1974 Nov; 12(3):309-19. PubMed ID: 4610823 [No Abstract] [Full Text] [Related]
44. Phagocytosis measured as inhibition of uridine uptake by Candida albicans. Yamamura M; Boler J; Valdimarsson H J Immunol Methods; 1977; 14(1):19-24. PubMed ID: 319171 [TBL] [Abstract][Full Text] [Related]
45. Carbohydrate effects of amino acid transport by Trypanosoma equiperdum. Jackson PR; Fisher FM J Protozool; 1977 May; 24(2):345-53. PubMed ID: 881658 [TBL] [Abstract][Full Text] [Related]
46. Factors affecting filamentation in Candida albicans: relationship of the uptake and distribution of proline to morphogenesis. Land GA; McDonald WC; Stjernholm RL; Friedman TL Infect Immun; 1975 May; 11(5):1014-23. PubMed ID: 1091557 [TBL] [Abstract][Full Text] [Related]
47. Examining the anti-candidal activity of 10 selected Indian herbs and investigating the effect of Lawsonia inermis extract on germ tube formation, protease, phospholipase, and aspartate dehydrogenase enzyme activity in Candida albicans. Ravichandran S; Muthuraman S Indian J Pharmacol; 2016; 48(1):47-52. PubMed ID: 26997722 [TBL] [Abstract][Full Text] [Related]
48. Antimicrobial activity of Buchenavia tetraphylla against Candida albicans strains isolated from vaginal secretions. Cavalcanti Filho JR; Silva TF; Nobre WQ; Oliveira de Souza LI; Silva E Silva Figueiredo CS; Figueiredo RC; de Gusmão NB; Silva MV; Nascimento da Silva LC; Correia MT Pharm Biol; 2017 Dec; 55(1):1521-1527. PubMed ID: 28376640 [TBL] [Abstract][Full Text] [Related]
49. Differences in interleukin-1β release-inducing activity of Candida albicans toward dendritic cells and macrophages. Hasebe A; Saeki A; Yoshida Y; Shibata KI Arch Oral Biol; 2018 Sep; 93():115-125. PubMed ID: 29894908 [TBL] [Abstract][Full Text] [Related]
50. Rubidium release: a rapid and sensitive assay for amphotericin B. Drazin RE; Lehrer RI J Infect Dis; 1976 Sep; 134(3):238-44. PubMed ID: 789783 [TBL] [Abstract][Full Text] [Related]
51. Evaluation the anti proliferative activity of structural proteins and fraction of supernatant from culture of Candida albicans. Holakuyee M; Yadegari MH; Hassan ZM; Mahdavi M Pak J Biol Sci; 2007 Jan; 10(2):318-21. PubMed ID: 19070035 [TBL] [Abstract][Full Text] [Related]
52. Effect of nitric oxide on H+ -efflux in presence of various nutrients in Candida albicans. Haque MM; Manzoor N; Hussain ME; Khan LA Indian J Exp Biol; 2004 Jan; 42(1):86-90. PubMed ID: 15274487 [TBL] [Abstract][Full Text] [Related]
53. Vitronectin interacts with Candida albicans and augments organism attachment to the NR8383 macrophage cell line. Limper AH; Standing JE Immunol Lett; 1994 Oct; 42(3):139-44. PubMed ID: 7534269 [TBL] [Abstract][Full Text] [Related]
54. Purification and properties of peptides which induce germination of blastospores of Candida albicans. Chattaway FW; Wheeler PR; O'Reilly J J Gen Microbiol; 1980 Oct; 120(2):431-7. PubMed ID: 7014773 [TBL] [Abstract][Full Text] [Related]
55. Antifungal effect of Echinophora platyloba on expression of CDR1 and CDR2 genes in fluconazole-resistant Candida albicans. Khajeh E; Hosseini Shokouh SJ; Rajabibazl M; Roudbary M; Rafiei S; Aslani P; Farahnejad Z Br J Biomed Sci; 2016; 73(1):44-8. PubMed ID: 27182677 [TBL] [Abstract][Full Text] [Related]
56. Biochemical effects of miconazole on fungi. I. Effects on the uptake and or utilization of purines, pyrimidines, nucleosides, amino acids and glucose by Candida albicans. Van den Bossche H Biochem Pharmacol; 1974 Feb; 23(4):887-99. PubMed ID: 4596244 [No Abstract] [Full Text] [Related]
57. Delineation of sodium-stimulated amino acid transport pathways in rabbit kidney brush border vesicles. Mircheff AK; Kippen I; Hirayama B; Wright EM J Membr Biol; 1982; 64(1-2):113-22. PubMed ID: 7057450 [TBL] [Abstract][Full Text] [Related]
58. [Effect of ionic composition of incubation medium on inhibition by levorin of amino acid transfer in Candida albicans]. Obukhovskaia AS; Lishnevskaia EB; Tereshin IM Biokhimiia; 1980 Jul; 45(7):1201-7. PubMed ID: 7011428 [TBL] [Abstract][Full Text] [Related]
59. Anti-Candida activity of cispentacin: the active transport by amino acid permeases and possible mechanisms of action. Capobianco JO; Zakula D; Coen ML; Goldman RC Biochem Biophys Res Commun; 1993 Feb; 190(3):1037-44. PubMed ID: 8439305 [TBL] [Abstract][Full Text] [Related]
60. The Organochalcogen Compound (MeOPhSe)2 Inhibits Both Formation and the Viability of the Biofilm Produced by Candida albicans, at Different Stages of Development. de Amorim LMM; Braga MT; Carvalho ML; de Oliveira IR; Querobino SM; Alberto-Silva C; da Rocha JBT; Costa MS Curr Pharm Des; 2018; 24(33):3964-3971. PubMed ID: 30465492 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]