These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 35729110)

  • 1. A bioinspired sequential energy transfer system constructed via supramolecular copolymerization.
    Han Y; Zhang X; Ge Z; Gao Z; Liao R; Wang F
    Nat Commun; 2022 Jun; 13(1):3546. PubMed ID: 35729110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photosynthetic antenna-reaction center mimicry by using boron dipyrromethene sensitizers.
    El-Khouly ME; Fukuzumi S; D'Souza F
    Chemphyschem; 2014 Jan; 15(1):30-47. PubMed ID: 24243758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial photosynthetic reaction centers coupled to light-harvesting antennas.
    Ghosh PK; Smirnov AY; Nori F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061138. PubMed ID: 22304071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems.
    Wasielewski MR
    Acc Chem Res; 2009 Dec; 42(12):1910-21. PubMed ID: 19803479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide-Modulated Self-Assembly of Chromophores toward Biomimetic Light-Harvesting Nanoarchitectonics.
    Zou Q; Liu K; Abbas M; Yan X
    Adv Mater; 2016 Feb; 28(6):1031-43. PubMed ID: 26273821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosynthetic antenna-reaction center mimicry: sequential energy- and electron transfer in a self-assembled supramolecular triad composed of boron dipyrrin, zinc porphyrin and fullerene.
    Maligaspe E; Tkachenko NV; Subbaiyan NK; Chitta R; Zandler ME; Lemmetyinen H; D'Souza F
    J Phys Chem A; 2009 Jul; 113(30):8478-89. PubMed ID: 19580310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular alternate donor-acceptor copolymers mediated by PtPt metal-metal interactions and their photocatalytic applications.
    Gao Z; Li Z; Gao Z; Wang F
    Nanoscale; 2018 Aug; 10(29):14005-14011. PubMed ID: 29995057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Förster Resonance Energy Transfer: Efficient Light Harvesting for Sequential Photo-Thermo-Electric Conversion.
    Fu K; Zeng X; Zhao X; Wu Y; Li M; Li XS; Pan C; Chen Z; Yu ZQ
    Small; 2021 Oct; 17(39):e2103172. PubMed ID: 34310041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Supramolecular Artificial Light-Harvesting System with Two-Step Sequential Energy Transfer for Photochemical Catalysis.
    Hao M; Sun G; Zuo M; Xu Z; Chen Y; Hu XY; Wang L
    Angew Chem Int Ed Engl; 2020 Jun; 59(25):10095-10100. PubMed ID: 31625651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multicomponent molecular approach to artificial photosynthesis - the role of fullerenes and endohedral metallofullerenes.
    Rudolf M; Kirner SV; Guldi DM
    Chem Soc Rev; 2016 Feb; 45(3):612-30. PubMed ID: 26744992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Assembled Light-Harvesting System from Chromophores in Lipid Vesicles.
    Sahin T; Harris MA; Vairaprakash P; Niedzwiedzki DM; Subramanian V; Shreve AP; Bocian DF; Holten D; Lindsey JS
    J Phys Chem B; 2015 Aug; 119(32):10231-43. PubMed ID: 26230425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring porphyrins and chlorins for self-assembly in biomimetic artificial antenna systems.
    Balaban TS
    Acc Chem Res; 2005 Aug; 38(8):612-23. PubMed ID: 16104684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mimicking Photosynthesis with Electrode-Supported Lipid Nanoassemblies.
    Wang M; Zhan W
    Acc Chem Res; 2016 Nov; 49(11):2551-2559. PubMed ID: 27759390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembled supramolecular artificial light-harvesting nanosystems: construction, modulation, and applications.
    Chen XM; Chen X; Hou XF; Zhang S; Chen D; Li Q
    Nanoscale Adv; 2023 Mar; 5(7):1830-1852. PubMed ID: 36998669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superradiance of bacteriochlorophyll c aggregates in chlorosomes of green photosynthetic bacteria.
    Malina T; Koehorst R; Bína D; Pšenčík J; van Amerongen H
    Sci Rep; 2021 Apr; 11(1):8354. PubMed ID: 33863954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy Transfer Kinetics in Photosynthesis as an Inspiration for Improving Organic Solar Cells.
    Nganou C; Lackner G; Teschome B; Deen MJ; Adir N; Pouhe D; Lupascu DC; Mkandawire M
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):19030-19039. PubMed ID: 28497947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significant enhancement in the power-conversion efficiency of chlorophyll co-sensitized solar cells by mimicking the principles of natural photosynthetic light-harvesting complexes.
    Wang XF; Koyama Y; Kitao O; Wada Y; Sasaki SI; Tamiaki H; Zhou H
    Biosens Bioelectron; 2010 Apr; 25(8):1970-6. PubMed ID: 20149628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bimodal intramolecular excitation energy transfer in a multichromophore photosynthetic model system: hybrid fusion proteins comprising natural phycobilin- and artificial chlorophyll-binding domains.
    Zeng XL; Tang K; Zhou N; Zhou M; Hou HJ; Scheer H; Zhao KH; Noy D
    J Am Chem Soc; 2013 Sep; 135(36):13479-87. PubMed ID: 23941594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design principles of photosynthetic light-harvesting.
    Fleming GR; Schlau-Cohen GS; Amarnath K; Zaks J
    Faraday Discuss; 2012; 155():27-41; discussion 103-14. PubMed ID: 22470965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.