These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 35729162)
1. Effects of thickness reduction in cold rolling process on the formability of sheet metals using ANFIS. Xie Y; Wu Y; Jalali A; Zhou H; Amine Khadimallah M Sci Rep; 2022 Jun; 12(1):10434. PubMed ID: 35729162 [TBL] [Abstract][Full Text] [Related]
2. ANFIS-based forming limit prediction of stainless steel 316 sheet metals. Zhang M; Meng Z; Shariati M Sci Rep; 2023 Feb; 13(1):3115. PubMed ID: 36813804 [TBL] [Abstract][Full Text] [Related]
3. Experimental Investigation on the Formability of Al-Mg Alloy 5052 Sheet by Tensile and Cupping Test. He H; Yang T; Ren Y; Peng Y; Xue S; Zheng L Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556753 [TBL] [Abstract][Full Text] [Related]
4. Unsupervised Deep Learning for Advanced Forming Limit Analysis in Sheet Metal: A Tensile Test-Based Approach. Thamm A; Thamm F; Sawodny A; Zeitler S; Merklein M; Maier A Materials (Basel); 2023 Nov; 16(21):. PubMed ID: 37959598 [TBL] [Abstract][Full Text] [Related]
5. Prediction of formation force during single-point incremental sheet metal forming using artificial intelligence techniques. Alsamhan A; Ragab AE; Dabwan A; Nasr MM; Hidri L PLoS One; 2019; 14(8):e0221341. PubMed ID: 31437217 [TBL] [Abstract][Full Text] [Related]
6. Effect of Rolling Parameters on Room-Temperature Stretch Formability of Mg-2Zn-0.5Ca Alloy. Li W; Huang G; Chen X; Huang X Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676349 [TBL] [Abstract][Full Text] [Related]
7. Experimental study and machine learning model to predict formability of magnesium alloy sheet. Viswanadhapalli B; V K BR; Nagaraju KC F1000Res; 2022; 11():1118. PubMed ID: 37638136 [No Abstract] [Full Text] [Related]
9. Simultaneous Improvement in the Strength and Formability of Commercially Pure Titanium via Twinning-induced Crystallographic Texture Control. Won JW; Park CH; Hong J; Lee CS; Hong SG Sci Rep; 2019 Feb; 9(1):2009. PubMed ID: 30765786 [TBL] [Abstract][Full Text] [Related]
10. Individual Contribution of Zn and Ca on Age-Hardenability and Formability of Zn-Based Magnesium Alloy Sheet. Jo S; Bohlen J; Kurz G Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35955176 [TBL] [Abstract][Full Text] [Related]
11. Application of artificial neural networks to predict the heavy metal contamination in the Bartin River. Ucun Ozel H; Gemici BT; Gemici E; Ozel HB; Cetin M; Sevik H Environ Sci Pollut Res Int; 2020 Dec; 27(34):42495-42512. PubMed ID: 32705560 [TBL] [Abstract][Full Text] [Related]
12. On the Determination of Forming Limits in Polycarbonate Sheets. Rosa-Sainz A; Centeno G; Silva MB; López-Fernández JA; Martínez-Donaire AJ; Vallellano C Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093044 [TBL] [Abstract][Full Text] [Related]
13. Performance evaluation of artificial intelligence paradigms-artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction. Tabbussum R; Dar AQ Environ Sci Pollut Res Int; 2021 May; 28(20):25265-25282. PubMed ID: 33453033 [TBL] [Abstract][Full Text] [Related]
14. Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. Güler I; Ubeyli ED J Neurosci Methods; 2005 Oct; 148(2):113-21. PubMed ID: 16054702 [TBL] [Abstract][Full Text] [Related]
15. An effective method for determining necking and fracture strains of sheet metals. Zhang R; Shi Z; Shao Z; Yardley VA; Lin J MethodsX; 2021; 8():101234. PubMed ID: 34434757 [TBL] [Abstract][Full Text] [Related]
16. On the Use of Strain Path Independent Metrics and Critical Distance Rule for Predicting Failure of AA7075-O Stretch-Bend Sheets. Martínez-Donaire AJ; Morales-Palma D; Vallellano C Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32825014 [TBL] [Abstract][Full Text] [Related]
17. Artificial intelligence modeling to predict transmembrane pressure in anaerobic membrane bioreactor-sequencing batch reactor during biohydrogen production. Taheri E; Amin MM; Fatehizadeh A; Rezakazemi M; Aminabhavi TM J Environ Manage; 2021 Aug; 292():112759. PubMed ID: 33984638 [TBL] [Abstract][Full Text] [Related]
18. Cold Rolling Texture Prediction Using Finite Element Simulation with Zooming Analysis. Wang H; Ding S; Taylor T; Yanagimoto J Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832311 [TBL] [Abstract][Full Text] [Related]
19. Comparative study of artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) for modeling of Cu (II) adsorption from aqueous solution using biochar derived from rambutan (Nephelium lappaceum) peel. Wong YJ; Arumugasamy SK; Chung CH; Selvarajoo A; Sethu V Environ Monit Assess; 2020 Jun; 192(7):439. PubMed ID: 32556670 [TBL] [Abstract][Full Text] [Related]
20. Bubbly flow prediction with randomized neural cells artificial learning and fuzzy systems based on k-ε turbulence and Eulerian model data set. Babanezhad M; Pishnamazi M; Marjani A; Shirazian S Sci Rep; 2020 Aug; 10(1):13837. PubMed ID: 32796869 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]