These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 35729197)
1. Assessment of image quality on color fundus retinal images using the automatic retinal image analysis. Shi C; Lee J; Wang G; Dou X; Yuan F; Zee B Sci Rep; 2022 Jun; 12(1):10455. PubMed ID: 35729197 [TBL] [Abstract][Full Text] [Related]
2. A deep learning framework for the early detection of multi-retinal diseases. Ejaz S; Baig R; Ashraf Z; Alnfiai MM; Alnahari MM; Alotaibi RM PLoS One; 2024; 19(7):e0307317. PubMed ID: 39052616 [TBL] [Abstract][Full Text] [Related]
4. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images. Son J; Shin JY; Kim HD; Jung KH; Park KH; Park SJ Ophthalmology; 2020 Jan; 127(1):85-94. PubMed ID: 31281057 [TBL] [Abstract][Full Text] [Related]
5. Artificial intelligence-based classification of cardiac autonomic neuropathy from retinal fundus images in patients with diabetes: The Silesia Diabetes Heart Study. Nabrdalik K; Irlik K; Meng Y; Kwiendacz H; Piaśnik J; Hendel M; Ignacy P; Kulpa J; Kegler K; Herba M; Boczek S; Hashim EB; Gao Z; Gumprecht J; Zheng Y; Lip GYH; Alam U Cardiovasc Diabetol; 2024 Aug; 23(1):296. PubMed ID: 39127709 [TBL] [Abstract][Full Text] [Related]
6. Automated Quality Assessment of Colour Fundus Images for Diabetic Retinopathy Screening in Telemedicine. Saha SK; Fernando B; Cuadros J; Xiao D; Kanagasingam Y J Digit Imaging; 2018 Dec; 31(6):869-878. PubMed ID: 29704086 [TBL] [Abstract][Full Text] [Related]
8. DAVS-NET: Dense Aggregation Vessel Segmentation Network for retinal vasculature detection in fundus images. Raza M; Naveed K; Akram A; Salem N; Afaq A; Madni HA; Khan MAU; Din MZ PLoS One; 2021; 16(12):e0261698. PubMed ID: 34972109 [TBL] [Abstract][Full Text] [Related]
9. Application of an Anomaly Detection Model to Screen for Ocular Diseases Using Color Retinal Fundus Images: Design and Evaluation Study. Han Y; Li W; Liu M; Wu Z; Zhang F; Liu X; Tao L; Li X; Guo X J Med Internet Res; 2021 Jul; 23(7):e27822. PubMed ID: 34255681 [TBL] [Abstract][Full Text] [Related]
10. Automatic retinal interest evaluation system (ARIES). Yin F; Wong DW; Yow AP; Lee BH; Quan Y; Zhang Z; Gopalakrishnan K; Li R; Liu J Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():162-5. PubMed ID: 25569922 [TBL] [Abstract][Full Text] [Related]
11. Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis. Niemeijer M; van Ginneken B; Russell SR; Suttorp-Schulten MS; Abràmoff MD Invest Ophthalmol Vis Sci; 2007 May; 48(5):2260-7. PubMed ID: 17460289 [TBL] [Abstract][Full Text] [Related]
12. Attention-based deep learning framework for automatic fundus image processing to aid in diabetic retinopathy grading. Romero-Oraá R; Herrero-Tudela M; López MI; Hornero R; García M Comput Methods Programs Biomed; 2024 Jun; 249():108160. PubMed ID: 38583290 [TBL] [Abstract][Full Text] [Related]
13. Detection of microaneurysms using ant colony algorithm in the early diagnosis of diabetic retinopathy. Selçuk T; Alkan A Med Hypotheses; 2019 Aug; 129():109242. PubMed ID: 31371092 [TBL] [Abstract][Full Text] [Related]
15. Automatic Grading of Retinal Blood Vessel in Deep Retinal Image Diagnosis. Maji D; Sekh AA J Med Syst; 2020 Sep; 44(10):180. PubMed ID: 32870389 [TBL] [Abstract][Full Text] [Related]
17. Multi-label classification of retinal lesions in diabetic retinopathy for automatic analysis of fundus fluorescein angiography based on deep learning. Pan X; Jin K; Cao J; Liu Z; Wu J; You K; Lu Y; Xu Y; Su Z; Jiang J; Yao K; Ye J Graefes Arch Clin Exp Ophthalmol; 2020 Apr; 258(4):779-785. PubMed ID: 31932886 [TBL] [Abstract][Full Text] [Related]
18. Retinal image analysis for disease screening through local tetra patterns. Porwal P; Pachade S; Kokare M; Giancardo L; Mériaudeau F Comput Biol Med; 2018 Nov; 102():200-210. PubMed ID: 30308336 [TBL] [Abstract][Full Text] [Related]