These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35729197)

  • 1. Assessment of image quality on color fundus retinal images using the automatic retinal image analysis.
    Shi C; Lee J; Wang G; Dou X; Yuan F; Zee B
    Sci Rep; 2022 Jun; 12(1):10455. PubMed ID: 35729197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning framework for the early detection of multi-retinal diseases.
    Ejaz S; Baig R; Ashraf Z; Alnfiai MM; Alnahari MM; Alotaibi RM
    PLoS One; 2024; 19(7):e0307317. PubMed ID: 39052616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated image quality appraisal through partial least squares discriminant analysis.
    Ramani RG; Shanthamalar JJ
    Int J Comput Assist Radiol Surg; 2022 Jul; 17(7):1367-1377. PubMed ID: 35650346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images.
    Son J; Shin JY; Kim HD; Jung KH; Park KH; Park SJ
    Ophthalmology; 2020 Jan; 127(1):85-94. PubMed ID: 31281057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial intelligence-based classification of cardiac autonomic neuropathy from retinal fundus images in patients with diabetes: The Silesia Diabetes Heart Study.
    Nabrdalik K; Irlik K; Meng Y; Kwiendacz H; Piaśnik J; Hendel M; Ignacy P; Kulpa J; Kegler K; Herba M; Boczek S; Hashim EB; Gao Z; Gumprecht J; Zheng Y; Lip GYH; Alam U
    Cardiovasc Diabetol; 2024 Aug; 23(1):296. PubMed ID: 39127709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Quality Assessment of Colour Fundus Images for Diabetic Retinopathy Screening in Telemedicine.
    Saha SK; Fernando B; Cuadros J; Xiao D; Kanagasingam Y
    J Digit Imaging; 2018 Dec; 31(6):869-878. PubMed ID: 29704086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of suitable fundus images using automated quality assessment methods.
    Şevik U; Köse C; Berber T; Erdöl H
    J Biomed Opt; 2014 Apr; 19(4):046006. PubMed ID: 24718384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DAVS-NET: Dense Aggregation Vessel Segmentation Network for retinal vasculature detection in fundus images.
    Raza M; Naveed K; Akram A; Salem N; Afaq A; Madni HA; Khan MAU; Din MZ
    PLoS One; 2021; 16(12):e0261698. PubMed ID: 34972109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of an Anomaly Detection Model to Screen for Ocular Diseases Using Color Retinal Fundus Images: Design and Evaluation Study.
    Han Y; Li W; Liu M; Wu Z; Zhang F; Liu X; Tao L; Li X; Guo X
    J Med Internet Res; 2021 Jul; 23(7):e27822. PubMed ID: 34255681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic retinal interest evaluation system (ARIES).
    Yin F; Wong DW; Yow AP; Lee BH; Quan Y; Zhang Z; Gopalakrishnan K; Li R; Liu J
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():162-5. PubMed ID: 25569922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis.
    Niemeijer M; van Ginneken B; Russell SR; Suttorp-Schulten MS; Abràmoff MD
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):2260-7. PubMed ID: 17460289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attention-based deep learning framework for automatic fundus image processing to aid in diabetic retinopathy grading.
    Romero-Oraá R; Herrero-Tudela M; López MI; Hornero R; García M
    Comput Methods Programs Biomed; 2024 Jun; 249():108160. PubMed ID: 38583290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of microaneurysms using ant colony algorithm in the early diagnosis of diabetic retinopathy.
    Selçuk T; Alkan A
    Med Hypotheses; 2019 Aug; 129():109242. PubMed ID: 31371092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validating retinal fundus image analysis algorithms: issues and a proposal.
    Trucco E; Ruggeri A; Karnowski T; Giancardo L; Chaum E; Hubschman JP; Al-Diri B; Cheung CY; Wong D; Abràmoff M; Lim G; Kumar D; Burlina P; Bressler NM; Jelinek HF; Meriaudeau F; Quellec G; Macgillivray T; Dhillon B
    Invest Ophthalmol Vis Sci; 2013 May; 54(5):3546-59. PubMed ID: 23794433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic Grading of Retinal Blood Vessel in Deep Retinal Image Diagnosis.
    Maji D; Sekh AA
    J Med Syst; 2020 Sep; 44(10):180. PubMed ID: 32870389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DrishtiCare: a telescreening platform for diabetic retinopathy powered with fundus image analysis.
    Joshi GD; Sivaswamy J
    J Diabetes Sci Technol; 2011 Jan; 5(1):23-31. PubMed ID: 21303621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-label classification of retinal lesions in diabetic retinopathy for automatic analysis of fundus fluorescein angiography based on deep learning.
    Pan X; Jin K; Cao J; Liu Z; Wu J; You K; Lu Y; Xu Y; Su Z; Jiang J; Yao K; Ye J
    Graefes Arch Clin Exp Ophthalmol; 2020 Apr; 258(4):779-785. PubMed ID: 31932886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinal image analysis for disease screening through local tetra patterns.
    Porwal P; Pachade S; Kokare M; Giancardo L; Mériaudeau F
    Comput Biol Med; 2018 Nov; 102():200-210. PubMed ID: 30308336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent trends and advances in fundus image analysis: A review.
    Iqbal S; Khan TM; Naveed K; Naqvi SS; Nawaz SJ
    Comput Biol Med; 2022 Dec; 151(Pt A):106277. PubMed ID: 36370579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully automated detection of retinal disorders by image-based deep learning.
    Li F; Chen H; Liu Z; Zhang X; Wu Z
    Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.