BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 35729274)

  • 1. Rational design of a disulfide bridge increases the thermostability of microbial transglutaminase.
    Suzuki M; Date M; Kashiwagi T; Suzuki E; Yokoyama K
    Appl Microbiol Biotechnol; 2022 Jun; 106(12):4553-4562. PubMed ID: 35729274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of introducing a disulfide bridge on the thermostability of microbial transglutaminase from Streptomyces mobaraensis.
    Yokoyama K; Ogaya D; Utsumi H; Suzuki M; Kashiwagi T; Suzuki E; Taguchi S
    Appl Microbiol Biotechnol; 2021 Apr; 105(7):2737-2745. PubMed ID: 33738551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the thermostability of transglutaminase from Streptomyces mobaraensis based on the rational design of a disulfide bond.
    Wang H; Chen H; Li Q; Yu F; Yan Y; Liu S; Tian J; Tan J
    Protein Expr Purif; 2022 Aug; 195-196():106079. PubMed ID: 35272012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constitutive expression of active microbial transglutaminase in Escherichia coli and comparative characterization to a known variant.
    Javitt G; Ben-Barak-Zelas Z; Jerabek-Willemsen M; Fishman A
    BMC Biotechnol; 2017 Feb; 17(1):23. PubMed ID: 28245818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of the activity and thermostability of microbial transglutaminase by multiple-site mutagenesis.
    Mu D; Lu J; Shu C; Li H; Li X; Cai J; Luo S; Yang P; Jiang S; Zheng Z
    Biosci Biotechnol Biochem; 2018 Jan; 82(1):106-109. PubMed ID: 29198166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased thermostability of microbial transglutaminase by combination of several hot spots evolved by random and saturation mutagenesis.
    Buettner K; Hertel TC; Pietzsch M
    Amino Acids; 2012 Feb; 42(2-3):987-96. PubMed ID: 21863232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction, expression, purification, characterization, and structural analysis of microbial transglutaminase variants.
    Song X; Sheng H; Zhou Y; Yu Y; He Y; Wang Z
    Biotechnol Appl Biochem; 2022 Dec; 69(6):2486-2495. PubMed ID: 34894362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering an Automaturing Transglutaminase with Enhanced Thermostability by Genetic Code Expansion with Two Codon Reassignments.
    Ohtake K; Mukai T; Iraha F; Takahashi M; Haruna KI; Date M; Yokoyama K; Sakamoto K
    ACS Synth Biol; 2018 Sep; 7(9):2170-2176. PubMed ID: 30063837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the Thermostability of Rhizomucor miehei Lipase with a Limited Screening Library by Rational-Design Point Mutations and Disulfide Bonds.
    Li G; Fang X; Su F; Chen Y; Xu L; Yan Y
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101200
    [No Abstract]   [Full Text] [Related]  

  • 10. Tailoring Activity and Selectivity of Microbial Transglutaminase.
    Deweid L; Avrutina O; Kolmar H
    Methods Mol Biol; 2019; 2012():151-169. PubMed ID: 31161508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico rational design and systems engineering of disulfide bridges in the catalytic domain of an alkaline α-amylase from Alkalimonas amylolytica to improve thermostability.
    Liu L; Deng Z; Yang H; Li J; Shin HD; Chen RR; Du G; Chen J
    Appl Environ Microbiol; 2014 Feb; 80(3):798-807. PubMed ID: 24212581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Introduction of a disulfide bridge enhances the thermostability of a Streptomyces olivaceoviridis xylanase mutant.
    Yang HM; Yao B; Meng K; Wang YR; Bai YG; Wu NF
    J Ind Microbiol Biotechnol; 2007 Mar; 34(3):213-8. PubMed ID: 17139507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific mutation of transglutaminase gene from
    Wan W; He D; Xue Z; Zhang Z
    J Biosci; 2017 Dec; 42(4):537-546. PubMed ID: 29229872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of pH on the high-pressure inactivation of microbial transglutaminase.
    Queirós RP; Gouveia S; Saraiva JA; Lopes-da-Silva JA
    Food Res Int; 2019 Jan; 115():73-82. PubMed ID: 30599984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directed Evolution of a Bond-Forming Enzyme: Ultrahigh-Throughput Screening of Microbial Transglutaminase Using Yeast Surface Display.
    Deweid L; Neureiter L; Englert S; Schneider H; Deweid J; Yanakieva D; Sturm J; Bitsch S; Christmann A; Avrutina O; Fuchsbauer HL; Kolmar H
    Chemistry; 2018 Oct; 24(57):15195-15200. PubMed ID: 30047596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic activity and thermoresistance of improved microbial transglutaminase variants.
    Böhme B; Moritz B; Wendler J; Hertel TC; Ihling C; Brandt W; Pietzsch M
    Amino Acids; 2020 Feb; 52(2):313-326. PubMed ID: 31350615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational Design of Disulfide Bonds Increases Thermostability of a Mesophilic 1,3-1,4-β-Glucanase from Bacillus terquilensis.
    Niu C; Zhu L; Xu X; Li Q
    PLoS One; 2016; 11(4):e0154036. PubMed ID: 27100881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The microbial transglutaminase immobilization on carboxylated poly(N-isopropylacrylamide) for thermo-responsivity.
    Zhou JQ; He T; Wang JW
    Enzyme Microb Technol; 2016 Jun; 87-88():44-51. PubMed ID: 27178794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Illuminating structure and acyl donor sites of a physiological transglutaminase substrate from Streptomyces mobaraensis.
    Juettner NE; Schmelz S; Bogen JP; Happel D; Fessner WD; Pfeifer F; Fuchsbauer HL; Scrima A
    Protein Sci; 2018 May; 27(5):910-922. PubMed ID: 29430769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of thermostability and catalytic properties of ammonia lyase through disulfide bond construction and backbone cyclization.
    Ni ZF; Li N; Xu P; Guo ZW; Zong MH; Lou WY
    Int J Biol Macromol; 2022 Oct; 219():804-811. PubMed ID: 35926674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.