These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 35729491)

  • 1. RResolver: efficient short-read repeat resolution within ABySS.
    Nikolić V; Afshinfard A; Chu J; Wong J; Coombe L; Nip KM; Warren RL; Birol I
    BMC Bioinformatics; 2022 Jun; 23(1):246. PubMed ID: 35729491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches.
    Cherukuri Y; Janga SC
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter.
    Jackman SD; Vandervalk BP; Mohamadi H; Chu J; Yeo S; Hammond SA; Jahesh G; Khan H; Coombe L; Warren RL; Birol I
    Genome Res; 2017 May; 27(5):768-777. PubMed ID: 28232478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating long-range connectivity information into de Bruijn graphs.
    Turner I; Garimella KV; Iqbal Z; McVean G
    Bioinformatics; 2018 Aug; 34(15):2556-2565. PubMed ID: 29554215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FastEtch: A Fast Sketch-Based Assembler for Genomes.
    Ghosh P; Kalyanaraman A
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1091-1106. PubMed ID: 28910776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LightAssembler: fast and memory-efficient assembly algorithm for high-throughput sequencing reads.
    El-Metwally S; Zakaria M; Hamza T
    Bioinformatics; 2016 Nov; 32(21):3215-3223. PubMed ID: 27412092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Faucet: streaming de novo assembly graph construction.
    Rozov R; Goldshlager G; Halperin E; Shamir R
    Bioinformatics; 2018 Jan; 34(1):147-154. PubMed ID: 29036597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clover: a clustering-oriented de novo assembler for Illumina sequences.
    Hsieh MF; Lu CL; Tang CY
    BMC Bioinformatics; 2020 Nov; 21(1):528. PubMed ID: 33203354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A space and time-efficient index for the compacted colored de Bruijn graph.
    Almodaresi F; Sarkar H; Srivastava A; Patro R
    Bioinformatics; 2018 Jul; 34(13):i169-i177. PubMed ID: 29949982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coverage-preserving sparsification of overlap graphs for long-read assembly.
    Jain C
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36892439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LMAS: evaluating metagenomic short de novo assembly methods through defined communities.
    Mendes CI; Vila-Cerqueira P; Motro Y; Moran-Gilad J; Carriço JA; Ramirez M
    Gigascience; 2022 Dec; 12():. PubMed ID: 36576131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RMI-DBG algorithm: A more agile iterative de Bruijn graph algorithm in short read genome assembly.
    Hosseini ZZ; Rahimi SK; Forouzan E; Baraani A
    J Bioinform Comput Biol; 2021 Apr; 19(2):2150005. PubMed ID: 33866959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MegaGTA: a sensitive and accurate metagenomic gene-targeted assembler using iterative de Bruijn graphs.
    Li D; Huang Y; Leung CM; Luo R; Ting HF; Lam TW
    BMC Bioinformatics; 2017 Oct; 18(Suppl 12):408. PubMed ID: 29072142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplex de Bruijn graphs enable genome assembly from long, high-fidelity reads.
    Bankevich A; Bzikadze AV; Kolmogorov M; Antipov D; Pevzner PA
    Nat Biotechnol; 2022 Jul; 40(7):1075-1081. PubMed ID: 35228706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Read mapping on de Bruijn graphs.
    Limasset A; Cazaux B; Rivals E; Peterlongo P
    BMC Bioinformatics; 2016 Jun; 17(1):237. PubMed ID: 27306641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient parallel and out of core algorithms for constructing large bi-directed de Bruijn graphs.
    Kundeti VK; Rajasekaran S; Dinh H; Vaughn M; Thapar V
    BMC Bioinformatics; 2010 Nov; 11():560. PubMed ID: 21078174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HyDA-Vista: towards optimal guided selection of k-mer size for sequence assembly.
    Shariat B; Movahedi NS; Chitsaz H; Boucher C
    BMC Genomics; 2014; 15 Suppl 10(Suppl 10):S9. PubMed ID: 25558875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly of long, error-prone reads using repeat graphs.
    Kolmogorov M; Yuan J; Lin Y; Pevzner PA
    Nat Biotechnol; 2019 May; 37(5):540-546. PubMed ID: 30936562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NeatFreq: reference-free data reduction and coverage normalization for De Novo sequence assembly.
    McCorrison JM; Venepally P; Singh I; Fouts DE; Lasken RS; Methé BA
    BMC Bioinformatics; 2014 Nov; 15(1):357. PubMed ID: 25407910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SAGE: String-overlap Assembly of GEnomes.
    Ilie L; Haider B; Molnar M; Solis-Oba R
    BMC Bioinformatics; 2014 Sep; 15(1):302. PubMed ID: 25225118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.