These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 35729512)

  • 21. Evolution of Digestive Enzymes and RNASE1 Provides Insights into Dietary Switch of Cetaceans.
    Wang Z; Xu S; Du K; Huang F; Chen Z; Zhou K; Ren W; Yang G
    Mol Biol Evol; 2016 Dec; 33(12):3144-3157. PubMed ID: 27651393
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent ecophysiological, biochemical and evolutional insights into plant carnivory.
    Adamec L; Matušíková I; Pavlovič A
    Ann Bot; 2021 Aug; 128(3):241-259. PubMed ID: 34111238
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rates and modes of body size evolution in early carnivores and herbivores: a case study from Captorhinidae.
    Brocklehurst N
    PeerJ; 2016; 4():e1555. PubMed ID: 26793424
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insights into Dietary Switch in Cetaceans: Evidence from Molecular Evolution of Proteinases and Lipases.
    Li G; Wei H; Bi J; Ding X; Li L; Xu S; Yang G; Ren W
    J Mol Evol; 2020 Aug; 88(6):521-535. PubMed ID: 32458105
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the Origin of Carnivory: Molecular Physiology and Evolution of Plants on an Animal Diet.
    Hedrich R; Fukushima K
    Annu Rev Plant Biol; 2021 Jun; 72():133-153. PubMed ID: 33434053
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Marine-freshwater transitions are associated with the evolution of dietary diversification in terapontid grunters (Teleostei: Terapontidae).
    Davis AM; Unmack PJ; Pusey BJ; Johnson JB; Pearson RG
    J Evol Biol; 2012 Jun; 25(6):1163-79. PubMed ID: 22519660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diet and Adaptive Evolution of Alanine-Glyoxylate Aminotransferase Mitochondrial Targeting in Birds.
    Wang BJ; Xia JM; Wang Q; Yu JL; Song Z; Zhao H
    Mol Biol Evol; 2020 Mar; 37(3):786-798. PubMed ID: 31702777
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Carnivorous and herbivorous dietetic configurations and physiomorphological aspects of the pancreas].
    BONETTI D; GHIANI P
    Boll Soc Ital Biol Sper; 1955; 31(7-8):901-3. PubMed ID: 13315719
    [No Abstract]   [Full Text] [Related]  

  • 29. The systematics of carnivorous sponges.
    Hestetun JT; Vacelet J; Boury-Esnault N; Borchiellini C; Kelly M; Ríos P; Cristobo J; Rapp HT
    Mol Phylogenet Evol; 2016 Jan; 94(Pt A):327-45. PubMed ID: 26416707
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolution of digestive enzyme genes associated with dietary diversity of crabs.
    Wang Z; Tang D; Guo H; Shen C; Wu L; Luo Y
    Genetica; 2020 Apr; 148(2):87-99. PubMed ID: 32096054
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Is the co-option of jasmonate signalling for botanical carnivory a universal trait for all carnivorous plants?
    Pavlovič A; Koller J; Vrobel O; Chamrád I; Lenobel R; Tarkowski P
    J Exp Bot; 2024 Jan; 75(1):334-349. PubMed ID: 37708289
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Repeated evolution of carnivory among Indo-Australian rodents.
    Rowe KC; Achmadi AS; Esselstyn JA
    Evolution; 2016 Mar; 70(3):653-65. PubMed ID: 26826614
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chitinase genes (
    Emerling CA; Delsuc F; Nachman MW
    Sci Adv; 2018 May; 4(5):eaar6478. PubMed ID: 29774238
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolutionary and dietary relationships of wild mammals based on the gut microbiome.
    Wu X; Wei Q; Wang X; Shang Y; Zhang H
    Gene; 2022 Jan; 808():145999. PubMed ID: 34627942
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome of the pitcher plant Cephalotus reveals genetic changes associated with carnivory.
    Fukushima K; Fang X; Alvarez-Ponce D; Cai H; Carretero-Paulet L; Chen C; Chang TH; Farr KM; Fujita T; Hiwatashi Y; Hoshi Y; Imai T; Kasahara M; Librado P; Mao L; Mori H; Nishiyama T; Nozawa M; Pálfalvi G; Pollard ST; Rozas J; Sánchez-Gracia A; Sankoff D; Shibata TF; Shigenobu S; Sumikawa N; Uzawa T; Xie M; Zheng C; Pollock DD; Albert VA; Li S; Hasebe M
    Nat Ecol Evol; 2017 Feb; 1(3):59. PubMed ID: 28812732
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Trehalase Gene as a Molecular Signature of Dietary Diversification in Mammals.
    Jiao H; Zhang L; Xie HW; Simmons NB; Liu H; Zhao H
    Mol Biol Evol; 2019 Oct; 36(10):2171-2183. PubMed ID: 31311032
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sequence and expression of an α-amylase gene in four related species of prickleback fishes (Teleostei: Stichaeidae): ontogenetic, dietary, and species-level effects.
    Kim KH; Horn MH; Sosa AE; German DP
    J Comp Physiol B; 2014 Feb; 184(2):221-34. PubMed ID: 24136006
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energetics and the evolution of carnivorous plants--Darwin's 'most wonderful plants in the world'.
    Ellison AM; Gotelli NJ
    J Exp Bot; 2009; 60(1):19-42. PubMed ID: 19213724
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stoichiometric variation within and between a terrestrial herbivorous and a semi-aquatic carnivorous mammal.
    Wenting E; Siepel H; Jansen PA
    J Trace Elem Med Biol; 2020 Dec; 62():126622. PubMed ID: 32693327
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Omics Approaches in Uncovering Molecular Evolution and Physiology of Botanical Carnivory.
    Baharin A; Ting TY; Goh HH
    Plants (Basel); 2023 Jan; 12(2):. PubMed ID: 36679121
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.