These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
424 related articles for article (PubMed ID: 35729531)
1. Predicting miRNA-disease associations based on graph attention network with multi-source information. Li G; Fang T; Zhang Y; Liang C; Xiao Q; Luo J BMC Bioinformatics; 2022 Jun; 23(1):244. PubMed ID: 35729531 [TBL] [Abstract][Full Text] [Related]
2. Hierarchical graph attention network for miRNA-disease association prediction. Li Z; Zhong T; Huang D; You ZH; Nie R Mol Ther; 2022 Apr; 30(4):1775-1786. PubMed ID: 35121109 [TBL] [Abstract][Full Text] [Related]
3. Multi-task prediction-based graph contrastive learning for inferring the relationship among lncRNAs, miRNAs and diseases. Sheng N; Wang Y; Huang L; Gao L; Cao Y; Xie X; Fu Y Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37529914 [TBL] [Abstract][Full Text] [Related]
4. Predicting miRNA-disease associations based on graph random propagation network and attention network. Zhong T; Li Z; You ZH; Nie R; Zhao H Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35079767 [TBL] [Abstract][Full Text] [Related]
5. Predicting miRNA-disease association from heterogeneous information network with GraRep embedding model. Ji BY; You ZH; Cheng L; Zhou JR; Alghazzawi D; Li LP Sci Rep; 2020 Apr; 10(1):6658. PubMed ID: 32313121 [TBL] [Abstract][Full Text] [Related]
6. Predicting miRNA-disease association via graph attention learning and multiplex adaptive modality fusion. Jin Z; Wang M; Tang C; Zheng X; Zhang W; Sha X; An S Comput Biol Med; 2024 Feb; 169():107904. PubMed ID: 38181611 [TBL] [Abstract][Full Text] [Related]
7. Predicting MiRNA-disease associations by multiple meta-paths fusion graph embedding model. Zhang L; Liu B; Li Z; Zhu X; Liang Z; An J BMC Bioinformatics; 2020 Oct; 21(1):470. PubMed ID: 33087064 [TBL] [Abstract][Full Text] [Related]
8. Graph Convolutional Network and Convolutional Neural Network Based Method for Predicting lncRNA-Disease Associations. Xuan P; Pan S; Zhang T; Liu Y; Sun H Cells; 2019 Aug; 8(9):. PubMed ID: 31480350 [TBL] [Abstract][Full Text] [Related]
9. Predicting miRNA-Disease Associations Based On Multi-View Variational Graph Auto-Encoder With Matrix Factorization. Ding Y; Lei X; Liao B; Wu FX IEEE J Biomed Health Inform; 2022 Jan; 26(1):446-457. PubMed ID: 34111017 [TBL] [Abstract][Full Text] [Related]
10. NEMPD: a network embedding-based method for predicting miRNA-disease associations by preserving behavior and attribute information. Ji BY; You ZH; Chen ZH; Wong L; Yi HC BMC Bioinformatics; 2020 Sep; 21(1):401. PubMed ID: 32912137 [TBL] [Abstract][Full Text] [Related]
11. HOPEXGB: A Consensual Model for Predicting miRNA/lncRNA-Disease Associations Using a Heterogeneous Disease-miRNA-lncRNA Information Network. He J; Li M; Qiu J; Pu X; Guo Y J Chem Inf Model; 2024 Apr; 64(7):2863-2877. PubMed ID: 37604142 [TBL] [Abstract][Full Text] [Related]
12. An improved random forest-based computational model for predicting novel miRNA-disease associations. Yao D; Zhan X; Kwoh CK BMC Bioinformatics; 2019 Dec; 20(1):624. PubMed ID: 31795954 [TBL] [Abstract][Full Text] [Related]
13. Predicting Mirna-Disease Associations Based on Neighbor Selection Graph Attention Networks. Zhao H; Li Z; You ZH; Nie R; Zhong T IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1298-1307. PubMed ID: 36067101 [TBL] [Abstract][Full Text] [Related]
14. Computational method using heterogeneous graph convolutional network model combined with reinforcement layer for MiRNA-disease association prediction. Huang D; An J; Zhang L; Liu B BMC Bioinformatics; 2022 Jul; 23(1):299. PubMed ID: 35879658 [TBL] [Abstract][Full Text] [Related]
15. DGAMDA: Predicting miRNA-disease association based on dynamic graph attention network. Jia C; Wang F; Xing B; Li S; Zhao Y; Li Y; Wang Q Int J Numer Method Biomed Eng; 2024 May; 40(5):e3809. PubMed ID: 38472636 [TBL] [Abstract][Full Text] [Related]
16. FCGCNMDA: predicting miRNA-disease associations by applying fully connected graph convolutional networks. Li J; Li Z; Nie R; You Z; Bao W Mol Genet Genomics; 2020 Sep; 295(5):1197-1209. PubMed ID: 32500265 [TBL] [Abstract][Full Text] [Related]
17. DeepWalk based method to predict lncRNA-miRNA associations via lncRNA-miRNA-disease-protein-drug graph. Yang L; Li LP; Yi HC BMC Bioinformatics; 2022 Feb; 22(Suppl 12):621. PubMed ID: 35216549 [TBL] [Abstract][Full Text] [Related]
18. A structural deep network embedding model for predicting associations between miRNA and disease based on molecular association network. Li HY; Chen HY; Wang L; Song SJ; You ZH; Yan X; Yu JQ Sci Rep; 2021 Jun; 11(1):12640. PubMed ID: 34135401 [TBL] [Abstract][Full Text] [Related]
19. Inferring miRNA-disease associations using collaborative filtering and resource allocation on a tripartite graph. Nguyen VT; Le TTK; Nguyen TQV; Tran DH BMC Med Genomics; 2021 Nov; 14(Suppl 3):225. PubMed ID: 34789252 [TBL] [Abstract][Full Text] [Related]
20. Predicting lncRNA-disease associations using multiple metapaths in hierarchical graph attention networks. Yao D; Deng Y; Zhan X; Zhan X BMC Bioinformatics; 2024 Jan; 25(1):46. PubMed ID: 38287236 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]