These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 35729785)

  • 21. Long-range oxidation of guanine by Ru(III) in duplex DNA.
    Arkin MR; Stemp ED; Pulver SC; Barton JK
    Chem Biol; 1997 May; 4(5):389-400. PubMed ID: 9195873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxidatively generated damage to the guanine moiety of DNA: mechanistic aspects and formation in cells.
    Cadet J; Douki T; Ravanat JL
    Acc Chem Res; 2008 Aug; 41(8):1075-83. PubMed ID: 18666785
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solvent exposure associated with single abasic sites alters the base sequence dependence of oxidation of guanine in DNA in GG sequence contexts.
    Lee YA; Liu Z; Dedon PC; Geacintov NE; Shafirovich V
    Chembiochem; 2011 Jul; 12(11):1731-9. PubMed ID: 21656632
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural and energetic heterogeneities of canonical and oxidized central guanine triad of B-DNA telomeric fragments.
    Cysewski P; Czeleń P
    J Mol Model; 2009 Jun; 15(6):607-13. PubMed ID: 19132417
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biochemical reconstitution and genetic characterization of the major oxidative damage base excision DNA repair pathway in Thermococcus kodakarensis.
    Gehring AM; Zatopek KM; Burkhart BW; Potapov V; Santangelo TJ; Gardner AF
    DNA Repair (Amst); 2020 Feb; 86():102767. PubMed ID: 31841800
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interactions of amino acids with oxidized guanine in the gas phase associated with the protection of damaged DNA.
    Zhao J; Yang H; Zhang M; Bu Y
    Chemphyschem; 2013 Apr; 14(5):1031-42. PubMed ID: 23427004
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Guanine-specific oxidation of double-stranded DNA by Cr(VI) and ascorbic acid forms spiroiminodihydantoin and 8-oxo-2'-deoxyguanosine.
    Slade PG; Hailer MK; Martin BD; Sugden KD
    Chem Res Toxicol; 2005 Jul; 18(7):1140-9. PubMed ID: 16022506
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational Study of the Oxidation of Guanine To Form 5-Carboxyamido-5-formamido-2-iminohydantoin (2Ih).
    Hebert SP; Schlegel HB
    Chem Res Toxicol; 2019 Nov; 32(11):2295-2304. PubMed ID: 31571479
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural and energetic properties of canonical and oxidized telomeric complexes studied by molecular dynamics simulations.
    Czeleń P; Cysewski P
    J Mol Model; 2013 Aug; 19(8):3339-49. PubMed ID: 23674370
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxidative charge transfer To repair thymine dimers and damage guanine bases in DNA assemblies containing tethered metallointercalators.
    Dandliker PJ; Núñez ME; Barton JK
    Biochemistry; 1998 May; 37(18):6491-502. PubMed ID: 9572867
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Global DNA dynamics of 8-oxoguanine repair by human OGG1 revealed by stopped-flow kinetics and molecular dynamics simulation.
    Lukina MV; Koval VV; Lomzov AA; Zharkov DO; Fedorova OS
    Mol Biosyst; 2017 Sep; 13(10):1954-1966. PubMed ID: 28770925
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical analysis of the effects of guanine oxidative damage on the properties of B-DNA telomere fragments.
    Cysewski P; Czeleń P
    J Mol Model; 2007 Jul; 13(6-7):739-50. PubMed ID: 17340111
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Guanine-specific DNA oxidation photosensitized by the tetraphenylporphyrin phosphorus(V) complex via singlet oxygen generation and electron transfer.
    Hirakawa K; Kawanishi S; Hirano T; Segawa H
    J Photochem Photobiol B; 2007 Jun; 87(3):209-17. PubMed ID: 17537641
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Long-range charge transport through double-stranded DNA mediated by manganese or iron porphyrins.
    Makarska M; Pratviel G
    J Biol Inorg Chem; 2008 Aug; 13(6):973-9. PubMed ID: 18446388
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neighboring base sequence effect on DNA damage.
    Lee YA; Cho HY; Kim SK
    J Biomol Struct Dyn; 2020 Jul; 38(11):3188-3195. PubMed ID: 31432766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 8-Oxo-7,8-dihydroguanine: links to gene expression, aging, and defense against oxidative stress.
    Radak Z; Boldogh I
    Free Radic Biol Med; 2010 Aug; 49(4):587-96. PubMed ID: 20483371
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical and biological consequences of oxidatively damaged guanine in DNA.
    Delaney S; Jarem DA; Volle CB; Yennie CJ
    Free Radic Res; 2012 Apr; 46(4):420-41. PubMed ID: 22239655
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 8-Oxoguanine DNA glycosylase 1: Beyond repair of the oxidatively modified base lesions.
    Ba X; Boldogh I
    Redox Biol; 2018 Apr; 14():669-678. PubMed ID: 29175754
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Telomere uncapping by common oxidative guanine lesions: Insights from atomistic models.
    Wieczór M; Czub J
    Free Radic Biol Med; 2020 Feb; 148():162-169. PubMed ID: 31926882
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterizing radiation-induced oxidation of DNA by way of the monohydrated guanine-cytosine radical cation.
    Jaeger HM; Schaefer HF
    J Phys Chem B; 2009 Jun; 113(23):8142-8. PubMed ID: 19445496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.