BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 35730408)

  • 1. Prediction and Preparation of Coamorphous Phases of a Bislactam.
    Chambers LI; Musa OM; Steed JW
    Mol Pharm; 2022 Jul; 19(7):2651-2661. PubMed ID: 35730408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coamorphous Active Pharmaceutical Ingredient-Small Molecule Mixtures: Considerations in the Choice of Coformers for Enhancing Dissolution and Oral Bioavailability.
    Newman A; Reutzel-Edens SM; Zografi G
    J Pharm Sci; 2018 Jan; 107(1):5-17. PubMed ID: 28989014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sinomenine-phenolic acid coamorphous drug systems: Solubilization, sustained release, and improved physical stability.
    Chen X; Li D; Zhang H; Duan Y; Huang Y
    Int J Pharm; 2021 Apr; 598():120389. PubMed ID: 33609724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the Optimal Molar Ratio in Amino Acid-Based Coamorphous Systems.
    Liu J; Rades T; Grohganz H
    Mol Pharm; 2020 Apr; 17(4):1335-1342. PubMed ID: 32119557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the p
    Hu Y; Guo Y; Li B; Xu R; Fang X; Cao Y; Liu Z; Jiang C; Lu S
    ACS Omega; 2021 Feb; 6(4):3106-3119. PubMed ID: 33553927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The natural bile acid surfactant sodium taurocholate (NaTC) as a coformer in coamorphous systems: Enhanced physical stability and dissolution behavior of coamorphous drug-NaTc systems.
    Gniado K; MacFhionnghaile P; McArdle P; Erxleben A
    Int J Pharm; 2018 Jan; 535(1-2):132-139. PubMed ID: 29107615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and Characterization of a Rifampicin Coamorphous Material with Tromethamine Coformer: An Experimental-Theoretical Study.
    Queiroz LHS; Barros RS; de Sousa FF; Lage MR; Sarraguça MC; Ribeiro PRS
    Mol Pharm; 2024 Mar; 21(3):1272-1284. PubMed ID: 38361428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation Mechanism of Coamorphous Drug-Amino Acid Mixtures.
    Jensen KT; Larsen FH; Cornett C; Löbmann K; Grohganz H; Rades T
    Mol Pharm; 2015 Jul; 12(7):2484-92. PubMed ID: 26057950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a Stable Coamorphous System Using Lactose as an Antiplasticizing Agent for Diphenhydramine Hydrochloride with a Low Glass Transition Temperature.
    Ueda H; Hirakawa Y; Miyano T; Imono M; Tse JY; Uchiyama H; Tozuka Y; Kadota K
    Mol Pharm; 2022 Apr; 19(4):1209-1218. PubMed ID: 35316068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallization kinetics and molecular dynamics of binary coamorphous systems of nimesulide and profen analogs.
    Zhang J; Shi Q; Qu T; Zhou D; Cai T
    Int J Pharm; 2021 Dec; 610():121235. PubMed ID: 34743960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coamorphous Loratadine-Citric Acid System with Enhanced Physical Stability and Bioavailability.
    Wang J; Chang R; Zhao Y; Zhang J; Zhang T; Fu Q; Chang C; Zeng A
    AAPS PharmSciTech; 2017 Oct; 18(7):2541-2550. PubMed ID: 28224393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Glass Transition Temperatures in Coamorphous Drug-Amino Acid Formulations.
    Kissi EO; Kasten G; Löbmann K; Rades T; Grohganz H
    Mol Pharm; 2018 Sep; 15(9):4247-4256. PubMed ID: 30020794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of the Synergistic Glass Transition Temperature of Coamorphous Molecular Glasses Using Activity Coefficient Models.
    Zhao X; Cheng S; Koh YP; Kelly BD; McKenna GB; Simon SL
    Mol Pharm; 2021 Sep; 18(9):3439-3451. PubMed ID: 34313449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase separation in coamorphous systems: in silico prediction and the experimental challenge of detection.
    Pajula K; Wittoek L; Lehto VP; Ketolainen J; Korhonen O
    Mol Pharm; 2014 Jul; 11(7):2271-9. PubMed ID: 24824610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the Solubility, Dissolution, and Bioavailability of Ibrutinib by Preparing It in a Coamorphous State With Saccharin.
    Shi X; Song S; Ding Z; Fan B; Huang W; Xu T
    J Pharm Sci; 2019 Sep; 108(9):3020-3028. PubMed ID: 31067482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triple Strategies to Improve Oral Bioavailability by Fabricating Coamorphous Forms of Ursolic Acid with Piperine: Enhancing Water-Solubility, Permeability, and Inhibiting Cytochrome P450 Isozymes.
    Yu D; Kan Z; Shan F; Zang J; Zhou J
    Mol Pharm; 2020 Dec; 17(12):4443-4462. PubMed ID: 32926628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of Complexation into a Coamorphous System Dramatically Enhances Dissolution and Eliminates Gelation of Amorphous Lurasidone Hydrochloride.
    Heng W; Su M; Cheng H; Shen P; Liang S; Zhang L; Wei Y; Gao Y; Zhang J; Qian S
    Mol Pharm; 2020 Jan; 17(1):84-97. PubMed ID: 31794225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Physical Stability and Synchronized Release of Febuxostat and Indomethacin in Coamorphous Solids.
    Moinuddin SM; Shi Q; Tao J; Guo M; Zhang J; Xue Q; Ruan S; Cai T
    AAPS PharmSciTech; 2020 Jan; 21(2):41. PubMed ID: 31898765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drug-Excipient Interactions: Effect on Molecular Mobility and Physical Stability of Ketoconazole-Organic Acid Coamorphous Systems.
    Fung MH; DeVault M; Kuwata KT; Suryanarayanan R
    Mol Pharm; 2018 Mar; 15(3):1052-1061. PubMed ID: 29309158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro-scale solubility assessments and prediction models for active pharmaceutical ingredients in polymeric matrices.
    Bochmann ES; Neumann D; Gryczke A; Wagner KG
    Eur J Pharm Biopharm; 2019 Aug; 141():111-120. PubMed ID: 31100430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.