These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 35730632)

  • 1. Trapping and releasing of single microparticles and cells in a microfluidic chip.
    Lv D; Zhang X; Xu M; Cao W; Liu X; Deng J; Yang J; Hu N
    Electrophoresis; 2022 Nov; 43(21-22):2165-2174. PubMed ID: 35730632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplexing microelectrodes for dielectrophoretic manipulation and electrical impedance measurement of single particles and cells in a microfluidic device.
    Geng Y; Zhu Z; Wang Y; Wang Y; Ouyang S; Zheng K; Ye W; Fan Y; Wang Z; Pan D
    Electrophoresis; 2019 May; 40(10):1436-1445. PubMed ID: 30706494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microfluidic-based hydrodynamic trap for single particles.
    Johnson-Chavarria EM; Tanyeri M; Schroeder CM
    J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of active and passive hybrid systems based on Dielectrophoresis for the manipulation of microparticles.
    Al-Ali A; Waheed W; Abu-Nada E; Alazzam A
    J Chromatogr A; 2022 Aug; 1676():463268. PubMed ID: 35779391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-Way Particle Transport Using Oscillatory Flow in Asymmetric Traps.
    Lee J; Burns MA
    Small; 2018 Mar; 14(9):. PubMed ID: 29377529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of geometry on dielectrophoretic trap stiffness in microparticle trapping.
    Rahman MRU; Kwak TJ; Woehl JC; Chang WJ
    Biomed Microdevices; 2021 Jun; 23(3):33. PubMed ID: 34185161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle trapping in electrically driven insulator-based microfluidics: Dielectrophoresis and induced-charge electrokinetics.
    Perez-Gonzalez VH
    Electrophoresis; 2021 Dec; 42(23):2445-2464. PubMed ID: 34081787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical Analysis of Hydrodynamic Flow in Microfluidic Biochip for Single-Cell Trapping Application.
    Khalili AA; Ahmad MR
    Int J Mol Sci; 2015 Nov; 16(11):26770-85. PubMed ID: 26569218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidics in structured multimaterial fibers.
    Yuan R; Lee J; Su HW; Levy E; Khudiyev T; Voldman J; Fink Y
    Proc Natl Acad Sci U S A; 2018 Nov; 115(46):E10830-E10838. PubMed ID: 30373819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic resettability for a microfluidic particulate-based arraying system.
    Sochol RD; Dueck ME; Li S; Lee LP; Lin L
    Lab Chip; 2012 Dec; 12(23):5051-6. PubMed ID: 23042508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances in Dielectrophoretic Manipulation and Separation of Microparticles and Biological Cells.
    Yao J; Zhao K; Lou J; Zhang K
    Biosensors (Basel); 2024 Aug; 14(9):. PubMed ID: 39329792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trapping of a Single Microparticle Using AC Dielectrophoresis Forces in a Microfluidic Chip.
    Wang Y; Tong N; Li F; Zhao K; Wang D; Niu Y; Xu F; Cheng J; Wang J
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signal-Based Methods in Dielectrophoresis for Cell and Particle Separation.
    Farasat M; Aalaei E; Kheirati Ronizi S; Bakhshi A; Mirhosseini S; Zhang J; Nguyen NT; Kashaninejad N
    Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Planar hydrodynamic traps and buried channels for bead and cell trapping and releasing.
    Lipp C; Uning K; Cottet J; Migliozzi D; Bertsch A; Renaud P
    Lab Chip; 2021 Sep; 21(19):3686-3694. PubMed ID: 34518854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A visual portable microfluidic experimental device with multiple electric field regulation functions.
    Guo W; Tao Y; Liu W; Song C; Zhou J; Jiang H; Ren Y
    Lab Chip; 2022 Apr; 22(8):1556-1564. PubMed ID: 35352749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geometrical effects in microfluidic-based microarrays for rapid, efficient single-cell capture of mammalian stem cells and plant cells.
    Lawrenz A; Nason F; Cooper-White JJ
    Biomicrofluidics; 2012 Jun; 6(2):24112-2411217. PubMed ID: 22655021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circular shaped microelectrodes for single cell electrical measurements for lab-on-a-chip applications.
    Farooq A; Butt NZ; Hassan U
    Biomed Microdevices; 2021 Jul; 23(3):35. PubMed ID: 34216279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A one-step molded microfluidic chip featuring a two-layer silver-PDMS microelectrode for dielectrophoretic cell separation.
    Zhang Z; Luo Y; Nie X; Yu D; Xing X
    Analyst; 2020 Aug; 145(16):5603-5614. PubMed ID: 32776070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multifunctional microfluidic platform for generation, trapping and release of droplets in a double laminar flow.
    Carreras MP; Wang S
    J Biotechnol; 2017 Jun; 251():106-111. PubMed ID: 28450257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dielectrophoresis Manipulation: Versatile Lateral and Vertical Mechanisms.
    Buyong MR; Kayani AA; Hamzah AA; Yeop Majlis B
    Biosensors (Basel); 2019 Feb; 9(1):. PubMed ID: 30813614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.