These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 35730654)
1. Na Xu CM; Peng J; Liu XH; Lai WH; He XX; Yang Z; Wang JZ; Qiao Y; Li L; Chou SL Small Methods; 2022 Aug; 6(8):e2200404. PubMed ID: 35730654 [TBL] [Abstract][Full Text] [Related]
2. Ball Milling-Enabled Fe Lucero M; Armitage DB; Yang X; Sandstrom SK; Lyons M; Davis RC; Sterbinsky GE; Kim N; Reed DM; Ji X; Li X; Feng Z ACS Appl Mater Interfaces; 2023 Aug; 15(30):36366-36372. PubMed ID: 37481736 [TBL] [Abstract][Full Text] [Related]
3. Ball Milling Solid-State Synthesis of Highly Crystalline Prussian Blue Analogue Na Peng J; Gao Y; Zhang H; Liu Z; Zhang W; Li L; Qiao Y; Yang W; Wang J; Dou S; Chou S Angew Chem Int Ed Engl; 2022 Aug; 61(32):e202205867. PubMed ID: 35583767 [TBL] [Abstract][Full Text] [Related]
4. Vacancies-regulated Prussian Blue Analogues through Precipitation Conversion for Cathodes in Sodium-ion Batteries with Energy Densities over 500 Wh/kg. Liu J; Wang Y; Jiang N; Wen B; Yang C; Liu Y Angew Chem Int Ed Engl; 2024 Sep; 63(39):e202400214. PubMed ID: 38299760 [TBL] [Abstract][Full Text] [Related]
5. High-Entropy and Component Stoichiometry Tuning Strategies Boost the Sodium-Ion Storage Performance of Cobalt-Free Prussian Blue Analogues Cathode Materials. Lin YT; Niu BT; Wang ZH; Li YX; Xu YP; Liu SW; Chen YX; Lin XM Molecules; 2024 Sep; 29(19):. PubMed ID: 39407489 [TBL] [Abstract][Full Text] [Related]
6. Isostructural Synthesis of Iron-Based Prussian Blue Analogs for Sodium-Ion Batteries. Liu Y; Fan S; Gao Y; Liu Y; Zhang H; Chen J; Chen X; Huang J; Liu X; Li L; Qiao Y; Chou S Small; 2023 Oct; 19(43):e2302687. PubMed ID: 37376874 [TBL] [Abstract][Full Text] [Related]
7. High Crystalline Prussian White Nanocubes as a Promising Cathode for Sodium-ion Batteries. Li C; Zang R; Li P; Man Z; Wang S; Li X; Wu Y; Liu S; Wang G Chem Asian J; 2018 Feb; 13(3):342-349. PubMed ID: 29281173 [TBL] [Abstract][Full Text] [Related]
8. Interstitial Water Improves Structural Stability of Iron Hexacyanoferrate for High-Performance Sodium-Ion Batteries. Hu J; Tao H; Chen M; Zhang Z; Cao S; Shen Y; Jiang K; Zhou M ACS Appl Mater Interfaces; 2022 Mar; 14(10):12234-12242. PubMed ID: 35234035 [TBL] [Abstract][Full Text] [Related]
9. Improved Reversible Capacity and Cycling Stability by Linear (N=O) Anions in Fe[Fe(CN) Han Q; Hu Y; Gao S; Yang Z; Liu X; Wang C; Han J ChemSusChem; 2023 Oct; 16(20):e202300823. PubMed ID: 37552229 [TBL] [Abstract][Full Text] [Related]
10. Acid-Assisted Ball Mill Synthesis of Carboxyl-Functional-Group-Modified Prussian Blue as Sodium-Ion Battery Cathode. Luo Y; Peng J; Yin S; Xue L; Yan Y Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35457998 [TBL] [Abstract][Full Text] [Related]
11. Ice-Assisted Synthesis of Highly Crystallized Prussian Blue Analogues for All-Climate and Long-Calendar-Life Sodium Ion Batteries. Peng J; Zhang W; Hu Z; Zhao L; Wu C; Peleckis G; Gu Q; Wang JZ; Liu HK; Dou SX; Chou S Nano Lett; 2022 Feb; 22(3):1302-1310. PubMed ID: 35089723 [TBL] [Abstract][Full Text] [Related]
12. Y-tube assisted coprecipitation synthesis of iron-based Prussian blue analogues cathode materials for sodium-ion batteries. Zhang R; Liu Y; Liu H; Zhong Y; Zhang Y; Wu Z; Wang X RSC Adv; 2024 Apr; 14(17):12096-12106. PubMed ID: 38628486 [TBL] [Abstract][Full Text] [Related]
13. Highly Crystallized Prussian Blue with Enhanced Kinetics for Highly Efficient Sodium Storage. Qin M; Ren W; Jiang R; Li Q; Yao X; Wang S; You Y; Mai L ACS Appl Mater Interfaces; 2021 Jan; 13(3):3999-4007. PubMed ID: 33439613 [TBL] [Abstract][Full Text] [Related]
14. Defect-Healing Induced Monoclinic Iron-Based Prussian Blue Analogs as High-Performance Cathode Materials for Sodium-Ion Batteries. Peng J; Huang J; Gao Y; Qiao Y; Dong H; Liu Y; Li L; Wang J; Dou S; Chou S Small; 2023 Sep; 19(36):e2300435. PubMed ID: 37166020 [TBL] [Abstract][Full Text] [Related]
15. Nano-Ni/Co-PBA as high-performance cathode material for aqueous sodium-ion batteries. Zeng Y; Wang Y; Huang Z; Luo H; Tang H; Dong S; Luo P Nanotechnology; 2023 Sep; 34(47):. PubMed ID: 37604148 [TBL] [Abstract][Full Text] [Related]
16. High Capacity and Fast Kinetics Enabled by Metal-Doping in Prussian Blue Analogue Cathodes for Sodium-Ion Batteries. Yimtrakarn T; Lo YA; Kongcharoenkitkul J; Lee JC; Kaveevivitchai W Chem Asian J; 2024 Jul; 19(13):e202301145. PubMed ID: 38703395 [TBL] [Abstract][Full Text] [Related]
17. Highly Crystallized Na₂CoFe(CN)₆ with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries. Wu X; Wu C; Wei C; Hu L; Qian J; Cao Y; Ai X; Wang J; Yang H ACS Appl Mater Interfaces; 2016 Mar; 8(8):5393-9. PubMed ID: 26849278 [TBL] [Abstract][Full Text] [Related]
18. Highly crystalline nickel hexacyanoferrate as a long-life cathode material for sodium-ion batteries. Rehman R; Peng J; Yi H; Shen Y; Yin J; Li C; Fang C; Li Q; Han J RSC Adv; 2020 Jul; 10(45):27033-27041. PubMed ID: 35515809 [TBL] [Abstract][Full Text] [Related]
19. Zn-Ion Batteries: Boosting the Rate Capability and Low-temperature Performance by Combining Structure and Morphology Engineering. Wang F; Li Y; Zhu W; Ge X; Cui H; Feng K; Liu S; Yang X ACS Appl Mater Interfaces; 2021 Jul; 13(29):34468-34476. PubMed ID: 34260197 [TBL] [Abstract][Full Text] [Related]
20. Highly Crystalline Multivariate Prussian Blue Analogs via Equilibrium Chelation Strategy for Stable and Fast Charging Sodium-Ion Batteries. Wang Y; Liu J; Jiang N; Yang J; Yang C; Liu Y Small; 2024 Nov; 20(44):e2403211. PubMed ID: 38958082 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]