These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 35730912)
1. Semi-supervised empirical Bayes group-regularized factor regression. Münch MM; van de Wiel MA; van der Vaart AW; Peeters CFW Biom J; 2022 Oct; 64(7):1289-1306. PubMed ID: 35730912 [TBL] [Abstract][Full Text] [Related]
2. Adaptive group-regularized logistic elastic net regression. Münch MM; Peeters CFW; Van Der Vaart AW; Van De Wiel MA Biostatistics; 2021 Oct; 22(4):723-737. PubMed ID: 31886488 [TBL] [Abstract][Full Text] [Related]
3. Accuracy of latent-variable estimation in Bayesian semi-supervised learning. Yamazaki K Neural Netw; 2015 Sep; 69():1-10. PubMed ID: 26005790 [TBL] [Abstract][Full Text] [Related]
4. Drug sensitivity prediction with normal inverse Gaussian shrinkage informed by external data. Münch MM; van de Wiel MA; Richardson S; Leday GGR Biom J; 2021 Feb; 63(2):289-304. PubMed ID: 33155717 [TBL] [Abstract][Full Text] [Related]
5. Distribution-free Bayesian regularized learning framework for semi-supervised learning. Ma J; Yu G Neural Netw; 2024 Jun; 174():106262. PubMed ID: 38547803 [TBL] [Abstract][Full Text] [Related]
6. Better prediction by use of co-data: adaptive group-regularized ridge regression. van de Wiel MA; Lien TG; Verlaat W; van Wieringen WN; Wilting SM Stat Med; 2016 Feb; 35(3):368-81. PubMed ID: 26365903 [TBL] [Abstract][Full Text] [Related]
7. Learning from a lot: Empirical Bayes for high-dimensional model-based prediction. van de Wiel MA; Te Beest DE; Münch MM Scand Stat Theory Appl; 2019 Mar; 46(1):2-25. PubMed ID: 31007342 [TBL] [Abstract][Full Text] [Related]
8. Bayesian Gaussian process classification with the EM-EP algorithm. Kim HC; Ghahramani Z IEEE Trans Pattern Anal Mach Intell; 2006 Dec; 28(12):1948-59. PubMed ID: 17108369 [TBL] [Abstract][Full Text] [Related]
9. Probabilistic Linear Discriminant Analysis Based on L Hu X; Sun Y; Gao J; Hu Y; Ju F; Yin B IEEE Trans Cybern; 2022 Mar; 52(3):1616-1627. PubMed ID: 32386179 [TBL] [Abstract][Full Text] [Related]
10. Using empirical Bayes predictors from generalized linear mixed models to test and visualize associations among longitudinal outcomes. Mikulich-Gilbertson SK; Wagner BD; Grunwald GK; Riggs PD; Zerbe GO Stat Methods Med Res; 2019 May; 28(5):1399-1411. PubMed ID: 29488446 [TBL] [Abstract][Full Text] [Related]
11. Inversion of hierarchical Bayesian models using Gaussian processes. Lomakina EI; Paliwal S; Diaconescu AO; Brodersen KH; Aponte EA; Buhmann JM; Stephan KE Neuroimage; 2015 Sep; 118():133-45. PubMed ID: 26048619 [TBL] [Abstract][Full Text] [Related]
12. Divergence measures and a general framework for local variational approximation. Watanabe K; Okada M; Ikeda K Neural Netw; 2011 Dec; 24(10):1102-9. PubMed ID: 21719252 [TBL] [Abstract][Full Text] [Related]
13. Constructing Pathway-Based Priors within a Gaussian Mixture Model for Bayesian Regression and Classification. Boluki S; Esfahani MS; Qian X; Dougherty ER IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(2):524-537. PubMed ID: 29990066 [TBL] [Abstract][Full Text] [Related]
14. Using empirical Bayes methods in biopharmaceutical research. Louis TA Stat Med; 1991 Jun; 10(6):811-27; discussion 828-9. PubMed ID: 1876774 [TBL] [Abstract][Full Text] [Related]
15. Variational policy search using sparse Gaussian process priors for learning multimodal optimal actions. Sasaki H; Matsubara T Neural Netw; 2021 Nov; 143():291-302. PubMed ID: 34166892 [TBL] [Abstract][Full Text] [Related]