BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35731601)

  • 1. Generation of Photocaged Nanobodies for Intracellular Applications in an Animal Using Genetic Code Expansion and Computationally Guided Protein Engineering.
    O'Shea JM; Goutou A; Brydon J; Sethna CR; Wood CW; Greiss S
    Chembiochem; 2022 Aug; 23(16):e202200321. PubMed ID: 35731601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Light-Activatable Photocaged Variant of the Ultra-High Affinity ALFA-Tag Nanobody.
    Jedlitzke B; Mootz HD
    Chembiochem; 2022 Jun; 23(12):e202200079. PubMed ID: 35411584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated computational pipeline for designing high-affinity nanobodies with expanded genetic codes.
    Padhi AK; Kumar A; Haruna KI; Sato H; Tamura H; Nagatoishi S; Tsumoto K; Yamaguchi A; Iraha F; Takahashi M; Sakamoto K; Zhang KYJ
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34415295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using a quadruplet codon to expand the genetic code of an animal.
    Xi Z; Davis L; Baxter K; Tynan A; Goutou A; Greiss S
    Nucleic Acids Res; 2022 May; 50(9):4801-4812. PubMed ID: 34882769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and Computational Studies of the SARS-CoV-2 Spike Protein Binding Mechanisms with Nanobodies: From Structure and Dynamics to Avidity-Driven Nanobody Engineering.
    Verkhivker G
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Preparation of Photobodies: Light-Activated Single-Domain Antibody Fragments.
    Yilmaz Z; Jedlitzke B; Mootz HD
    Methods Mol Biol; 2022; 2446():409-424. PubMed ID: 35157286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precise optical control of gene expression in
    Davis L; Radman I; Goutou A; Tynan A; Baxter K; Xi Z; O'Shea JM; Chin JW; Greiss S
    Elife; 2021 Aug; 10():. PubMed ID: 34350826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Amber Suppression
    Joest EF; Winter C; Wesalo JS; Deiters A; Tampé R
    ACS Synth Biol; 2022 Apr; 11(4):1466-1476. PubMed ID: 35060375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-guided intrabodies for on-demand
    Joest EF; Winter C; Wesalo JS; Deiters A; Tampé R
    Chem Sci; 2021 Apr; 12(16):5787-5795. PubMed ID: 35342543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanobody engineering for SARS-CoV-2 neutralization and detection.
    Hannula L; Kuivanen S; Lasham J; Kant R; Kareinen L; Bogacheva M; Strandin T; Sironen T; Hepojoki J; Sharma V; Saviranta P; Kipar A; Vapalahti O; Huiskonen JT; Rissanen I
    Microbiol Spectr; 2024 Apr; 12(4):e0419922. PubMed ID: 38363137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photobodies: Light-Activatable Single-Domain Antibody Fragments.
    Jedlitzke B; Yilmaz Z; Dörner W; Mootz HD
    Angew Chem Int Ed Engl; 2020 Jan; 59(4):1506-1510. PubMed ID: 31755215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A nanobody toolbox to investigate localisation and dynamics of
    Loreau V; Rees R; Chan EH; Taxer W; Gregor K; Mußil B; Pitaval C; Luis NM; Mangeol P; Schnorrer F; Görlich D
    Elife; 2023 Jan; 12():. PubMed ID: 36645120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NanoBERTa-ASP: predicting nanobody paratope based on a pretrained RoBERTa model.
    Li S; Meng X; Li R; Huang B; Wang X
    BMC Bioinformatics; 2024 Mar; 25(1):122. PubMed ID: 38515052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-based engineering of anti-GFP nanobody tandems as ultra-high-affinity reagents for purification.
    Zhang Z; Wang Y; Ding Y; Hattori M
    Sci Rep; 2020 Apr; 10(1):6239. PubMed ID: 32277083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Immobilization of Engineered Nanobodies on Gold Sensors.
    Simões B; Guedens WJ; Keene C; Kubiak-Ossowska K; Mulheran P; Kotowska AM; Scurr DJ; Alexander MR; Broisat A; Johnson S; Muyldermans S; Devoogdt N; Adriaensens P; Mendes PM
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):17353-17360. PubMed ID: 33845569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetically Encoded Photocaged Proteinogenic and Non-Proteinogenic Amino Acids.
    Yang X; Su XC; Xuan W
    Chembiochem; 2024 Jun; ():e202400393. PubMed ID: 38831474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection of Functional Intracellular Nanobodies.
    Woods J
    SLAS Discov; 2019 Aug; 24(7):703-713. PubMed ID: 31173539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic Encoding of Unnatural Amino Acids in C. elegans.
    Davis L; Greiss S
    Methods Mol Biol; 2018; 1728():389-408. PubMed ID: 29405011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering an anti-granulocyte colony stimulating factor receptor nanobody for improved affinity.
    Bakherad H; Farahmand M; Setayesh N; Ebrahim-Habibi A
    Life Sci; 2020 Sep; 257():118052. PubMed ID: 32634431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constructing Photoactivatable Protein with Genetically Encoded Photocaged Glutamic Acid.
    Yang X; Zhao L; Wang Y; Ji Y; Su XC; Ma JA; Xuan W
    Angew Chem Int Ed Engl; 2023 Oct; 62(40):e202308472. PubMed ID: 37587083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.