These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35731886)

  • 21. Towards photorealistic and immersive virtual-reality environments for simulated prosthetic vision: integrating recent breakthroughs in consumer hardware and software.
    Zapf MP; Matteucci PB; Lovell NH; Zheng S; Suaning GJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2597-600. PubMed ID: 25570522
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Open Issues in Evolutionary Robotics.
    Silva F; Duarte M; Correia L; Oliveira SM; Christensen AL
    Evol Comput; 2016; 24(2):205-36. PubMed ID: 26581015
    [TBL] [Abstract][Full Text] [Related]  

  • 23. OCTSharp: an open-source and real-time OCT imaging software based on C.
    Chen W; Wang H
    Biomed Opt Express; 2023 Nov; 14(11):6060-6071. PubMed ID: 38021120
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A μ analysis-based, controller-synthesis framework for robust bioinspired visual navigation in less-structured environments.
    Keshavan J; Gremillion G; Escobar-Alvarez H; Humbert JS
    Bioinspir Biomim; 2014 Jun; 9(2):025011. PubMed ID: 24852145
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Onboard Vision-Based System for Autonomous Landing of a Low-Cost Quadrotor on a Novel Landing Pad.
    Liu X; Zhang S; Tian J; Liu L
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31671894
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A self-rotating, single-actuated UAV with extended sensor field of view for autonomous navigation.
    Chen N; Kong F; Xu W; Cai Y; Li H; He D; Qin Y; Zhang F
    Sci Robot; 2023 Mar; 8(76):eade4538. PubMed ID: 36921018
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of optimal feedback control rules from micro-quadrotor and insect flight trajectories.
    Faruque IA; Muijres FT; Macfarlane KM; Kehlenbeck A; Humbert JS
    Biol Cybern; 2018 Jun; 112(3):165-179. PubMed ID: 29299686
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Benchmarking Highly Parallel Hardware for Spiking Neural Networks in Robotics.
    Steffen L; Koch R; Ulbrich S; Nitzsche S; Roennau A; Dillmann R
    Front Neurosci; 2021; 15():667011. PubMed ID: 34267622
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bio-inspired vision based robot control using featureless estimations of time-to-contact.
    Zhang H; Zhao J
    Bioinspir Biomim; 2017 Jan; 12(2):025001. PubMed ID: 27973340
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An FPGA hardware/software co-design towards evolvable spiking neural networks for robotics application.
    Johnston SP; Prasad G; Maguire L; McGinnity TM
    Int J Neural Syst; 2010 Dec; 20(6):447-61. PubMed ID: 21117269
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computer Vision Positioning and Local Obstacle Avoidance Optimization Based on Neural Network Algorithm.
    Yang L; Lei W
    Comput Intell Neurosci; 2022; 2022():3061910. PubMed ID: 35401716
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neuro-inspired spike-based motion: from dynamic vision sensor to robot motor open-loop control through spike-VITE.
    Perez-Peña F; Morgado-Estevez A; Linares-Barranco A; Jimenez-Fernandez A; Gomez-Rodriguez F; Jimenez-Moreno G; Lopez-Coronado J
    Sensors (Basel); 2013 Nov; 13(11):15805-32. PubMed ID: 24264330
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oncilla Robot: A Versatile Open-Source Quadruped Research Robot With Compliant Pantograph Legs.
    Spröwitz AT; Tuleu A; Ajallooeian M; Vespignani M; Möckel R; Eckert P; D'Haene M; Degrave J; Nordmann A; Schrauwen B; Steil J; Ijspeert AJ
    Front Robot AI; 2018; 5():67. PubMed ID: 33500946
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trajectory tracking of a quadrotor using a robust adaptive type-2 fuzzy neural controller optimized by cuckoo algorithm.
    Shirzadeh M; Amirkhani A; Tork N; Taghavifar H
    ISA Trans; 2021 Aug; 114():171-190. PubMed ID: 33422331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neural-Fly enables rapid learning for agile flight in strong winds.
    O'Connell M; Shi G; Shi X; Azizzadenesheli K; Anandkumar A; Yue Y; Chung SJ
    Sci Robot; 2022 May; 7(66):eabm6597. PubMed ID: 35507683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuromorphic computing hardware and neural architectures for robotics.
    Sandamirskaya Y; Kaboli M; Conradt J; Celikel T
    Sci Robot; 2022 Jun; 7(67):eabl8419. PubMed ID: 35767646
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Realtime cerebellum: a large-scale spiking network model of the cerebellum that runs in realtime using a graphics processing unit.
    Yamazaki T; Igarashi J
    Neural Netw; 2013 Nov; 47():103-11. PubMed ID: 23434303
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential GNSS and Vision-Based Tracking to Improve Navigation Performance in Cooperative Multi-UAV Systems.
    Vetrella AR; Fasano G; Accardo D; Moccia A
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27999318
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A visual motion detecting module for dragonfly-controlled robots.
    Pham TT; Higgins CM
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1666-9. PubMed ID: 25570294
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Data-Driven Optimal Formation Control for Quadrotor Team With Unknown Dynamics.
    Zhao W; Liu H; Lewis FL; Wang X
    IEEE Trans Cybern; 2022 Aug; 52(8):7889-7898. PubMed ID: 33502991
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.