These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 35731933)
21. Main protease mutants of SARS-CoV-2 variants remain susceptible to nirmatrelvir. Ullrich S; Ekanayake KB; Otting G; Nitsche C Bioorg Med Chem Lett; 2022 Apr; 62():128629. PubMed ID: 35182772 [TBL] [Abstract][Full Text] [Related]
22. Optimizing the use of Paxlovid in clinical practice. McCarthy MW Drugs Today (Barc); 2022 Nov; 58(11):539-546. PubMed ID: 36422515 [TBL] [Abstract][Full Text] [Related]
23. Oral Antiviral Treatment for COVID-19: A Comprehensive Review on Nirmatrelvir/Ritonavir. Akinosoglou K; Schinas G; Gogos C Viruses; 2022 Nov; 14(11):. PubMed ID: 36423149 [TBL] [Abstract][Full Text] [Related]
24. In Silico Insights into the SARS CoV-2 Main Protease Suggest NADH Endogenous Defences in the Control of the Pandemic Coronavirus Infection. Martorana A; Gentile C; Lauria A Viruses; 2020 Jul; 12(8):. PubMed ID: 32722574 [TBL] [Abstract][Full Text] [Related]
25. In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. Kumar Y; Singh H; Patel CN J Infect Public Health; 2020 Sep; 13(9):1210-1223. PubMed ID: 32561274 [TBL] [Abstract][Full Text] [Related]
26. Nirmatrelvir Resistance in an Immunocompromised Patient with Persistent Coronavirus Disease 2019. Yamamoto C; Taniguchi M; Furukawa K; Inaba T; Niiyama Y; Ide D; Mizutani S; Kuroda J; Tanino Y; Nishioka K; Watanabe Y; Takayama K; Nakaya T; Nukui Y Viruses; 2024 Apr; 16(5):. PubMed ID: 38793600 [TBL] [Abstract][Full Text] [Related]
27. Disposition of Nirmatrelvir, an Orally Bioavailable Inhibitor of SARS-CoV-2 3C-Like Protease, across Animals and Humans. Eng H; Dantonio AL; Kadar EP; Obach RS; Di L; Lin J; Patel NC; Boras B; Walker GS; Novak JJ; Kimoto E; Singh RSP; Kalgutkar AS Drug Metab Dispos; 2022 May; 50(5):576-590. PubMed ID: 35153195 [TBL] [Abstract][Full Text] [Related]
29. Development of a Fluorescence-Based, High-Throughput SARS-CoV-2 3CL Froggatt HM; Heaton BE; Heaton NS J Virol; 2020 Oct; 94(22):. PubMed ID: 32843534 [TBL] [Abstract][Full Text] [Related]
30. The Design, Synthesis and Mechanism of Action of Paxlovid, a Protease Inhibitor Drug Combination for the Treatment of COVID-19. Bege M; Borbás A Pharmaceutics; 2024 Feb; 16(2):. PubMed ID: 38399271 [TBL] [Abstract][Full Text] [Related]
31. Why Are Lopinavir and Ritonavir Effective against the Newly Emerged Coronavirus 2019? Atomistic Insights into the Inhibitory Mechanisms. Nutho B; Mahalapbutr P; Hengphasatporn K; Pattaranggoon NC; Simanon N; Shigeta Y; Hannongbua S; Rungrotmongkol T Biochemistry; 2020 May; 59(18):1769-1779. PubMed ID: 32293875 [TBL] [Abstract][Full Text] [Related]
38. A yeast-based system to study SARS-CoV-2 Mpro structure and to identify nirmatrelvir resistant mutations. Ou J; Lewandowski EM; Hu Y; Lipinski AA; Aljasser A; Colon-Ascanio M; Morgan RT; Jacobs LMC; Zhang X; Bikowitz MJ; Langlais PR; Tan H; Wang J; Chen Y; Choy JS PLoS Pathog; 2023 Aug; 19(8):e1011592. PubMed ID: 37651467 [TBL] [Abstract][Full Text] [Related]
39. Large scale analysis of the SARS-CoV-2 main protease reveals marginal presence of nirmatrelvir-resistant SARS-CoV-2 Omicron mutants in Ontario, Canada, December 2021-September 2023. Duvvuri V; Shire F; Isabel S; Braukmann T; Clark S; Marchand-Austin A; Eshaghi A; Bandukwala H; Varghese N; Li Y; Sivaraman K; Hussain H; Cronin K; Sullivan A; Li A; Zygmunt A; Ramotar K; Kus J; Hasso M; Corbeil A; Gubbay J; Patel S Can Commun Dis Rep; 2024 Oct; 50(10):365-374. PubMed ID: 39386278 [TBL] [Abstract][Full Text] [Related]
40. Unravelling lead antiviral phytochemicals for the inhibition of SARS-CoV-2 M Gurung AB; Ali MA; Lee J; Farah MA; Al-Anazi KM Life Sci; 2020 Aug; 255():117831. PubMed ID: 32450166 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]