These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35732014)

  • 1. Inorganic Crystal Structure Prototype Database Based on Unsupervised Learning of Local Atomic Environments.
    Luo S; Xing B; Faizan M; Xie J; Zhou K; Zhao R; Li T; Wang X; Fu Y; He X; Lv J; Zhang L
    J Phys Chem A; 2022 Jul; 126(26):4300-4312. PubMed ID: 35732014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of crystal structure prototype database: methods and applications.
    Su C; Lv J; Li Q; Wang H; Zhang L; Wang Y; Ma Y
    J Phys Condens Matter; 2017 Apr; 29(16):165901. PubMed ID: 28248192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creating Machine Learning-Driven Material Recipes Based on Crystal Structure.
    Takahashi K; Takahashi L
    J Phys Chem Lett; 2019 Jan; 10(2):283-288. PubMed ID: 30609373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The rule of four: anomalous distributions in the stoichiometries of inorganic compounds.
    Gazzarrini E; Cersonsky RK; Bercx M; Adorf CS; Marzari N
    NPJ Comput Mater; 2024; 10(1):73. PubMed ID: 38751828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain data augmentation enables machine learning of inorganic crystal geometry optimization.
    Dinic F; Wang Z; Neporozhnii I; Salim UB; Bajpai R; Rajiv N; Chavda V; Radhakrishnan V; Voznyy O
    Patterns (N Y); 2023 Feb; 4(2):100663. PubMed ID: 36873906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Approach for Clustering Zeolite Crystal Structures.
    Lach-Hab M; Yang S; Vaisman II; Blaisten-Barojas E
    Mol Inform; 2010 Apr; 29(4):297-301. PubMed ID: 27463057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Synthesizability using Machine Learning on Databases of Existing Inorganic Materials.
    Zhu R; Tian SIP; Ren Z; Li J; Buonassisi T; Hippalgaonkar K
    ACS Omega; 2023 Mar; 8(9):8210-8218. PubMed ID: 36910925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local structure order parameters and site fingerprints for quantification of coordination environment and crystal structure similarity.
    Zimmermann NER; Jain A
    RSC Adv; 2020 Feb; 10(10):6063-6081. PubMed ID: 35497431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design.
    Belsky A; Hellenbrandt M; Karen VL; Luksch P
    Acta Crystallogr B; 2002 Jun; 58(Pt 3 Pt 1):364-9. PubMed ID: 12037357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal chemistry of inorganic metal borohydrides and their relation to metal oxides.
    Černý R; Schouwink P
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2015 Dec; 71(Pt 6):619-40. PubMed ID: 26634719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global Mapping of Structures and Properties of Crystal Materials.
    Li Q; Dong R; Fu N; Omee SS; Wei L; Hu J
    J Chem Inf Model; 2023 Jun; 63(12):3814-3826. PubMed ID: 37310214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Navigating the design space of inorganic materials synthesis using statistical methods and machine learning.
    Braham EJ; Davidson RD; Al-Hashimi M; Arróyave R; Banerjee S
    Dalton Trans; 2020 Aug; 49(33):11480-11488. PubMed ID: 32743629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification of apatite structures via topological data analysis: a framework for a 'Materials Barcode' representation of structure maps.
    Broderick S; Dongol R; Zhang T; Rajan K
    Sci Rep; 2021 Jun; 11(1):11599. PubMed ID: 34078920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unsupervised learning for local structure detection in colloidal systems.
    Boattini E; Dijkstra M; Filion L
    J Chem Phys; 2019 Oct; 151(15):154901. PubMed ID: 31640379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Crystal Automated Refinement (SCAR): A Data-Driven Method for Determining Inorganic Structures.
    Viswanathan G; Oliynyk AO; Antono E; Ling J; Meredig B; Brgoch J
    Inorg Chem; 2019 Jul; 58(14):9004-9015. PubMed ID: 31267739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local Structural Features Elucidate Crystallization of Complex Structures.
    Martirossyan MM; Spellings M; Pan H; Dshemuchadse J
    ACS Nano; 2024 Jun; 18(23):14989-15002. PubMed ID: 38815007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explainable machine learning for materials discovery: predicting the potentially formable Nd-Fe-B crystal structures and extracting the structure-stability relationship.
    Pham TL; Nguyen DN; Ha MQ; Kino H; Miyake T; Dam HC
    IUCrJ; 2020 Nov; 7(Pt 6):1036-1047. PubMed ID: 33209317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploration of the mechanism of traditional Chinese medicine by AI approach using unsupervised machine learning for cellular functional similarity of compounds in heterogeneous networks, XiaoErFuPi granules as an example.
    Guo F; Tang X; Zhang W; Wei J; Tang S; Wu H; Yang H
    Pharmacol Res; 2020 Oct; 160():105077. PubMed ID: 32687952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Color clustering and learning for image segmentation based on neural networks.
    Dong G; Xie M
    IEEE Trans Neural Netw; 2005 Jul; 16(4):925-36. PubMed ID: 16121733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data mining approaches to high-throughput crystal structure and compound prediction.
    Hautier G
    Top Curr Chem; 2014; 345():139-79. PubMed ID: 24287952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.