These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35732039)

  • 21. Excitons in semiconducting carbon nanotubes: diameter-dependent photoluminescence spectra.
    Kanemitsu Y
    Phys Chem Chem Phys; 2011 Sep; 13(33):14879-88. PubMed ID: 21735026
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon nanotube photo- and electroluminescence in longitudinal electric fields.
    Freitag M; Steiner M; Naumov A; Small JP; Bol AA; Perebeinos V; Avouris P
    ACS Nano; 2009 Nov; 3(11):3744-8. PubMed ID: 19928934
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Systematic determination of absolute absorption cross-section of individual carbon nanotubes.
    Liu K; Hong X; Choi S; Jin C; Capaz RB; Kim J; Wang W; Bai X; Louie SG; Wang E; Wang F
    Proc Natl Acad Sci U S A; 2014 May; 111(21):7564-9. PubMed ID: 24821815
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On-the-Fly Nonadiabatic Dynamics Simulations of Single-Walled Carbon Nanotubes with Covalent Defects.
    Weight BM; Sifain AE; Gifford BJ; Htoon H; Tretiak S
    ACS Nano; 2023 Apr; 17(7):6208-6219. PubMed ID: 36972076
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Defect-induced photoluminescence from dark excitonic states in individual single-walled carbon nanotubes.
    Harutyunyan H; Gokus T; Green AA; Hersam MC; Allegrini M; Hartschuh A
    Nano Lett; 2009 May; 9(5):2010-4. PubMed ID: 19331347
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low-Temperature Single Carbon Nanotube Spectroscopy of sp
    He X; Gifford BJ; Hartmann NF; Ihly R; Ma X; Kilina SV; Luo Y; Shayan K; Strauf S; Blackburn JL; Tretiak S; Doorn SK; Htoon H
    ACS Nano; 2017 Nov; 11(11):10785-10796. PubMed ID: 28958146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrafast Exciton Trapping at
    Sykes ME; Kim M; Wu X; Wiederrecht GP; Peng L; Wang Y; Gosztola DJ; Ma X
    ACS Nano; 2019 Nov; 13(11):13264-13270. PubMed ID: 31661244
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photoinduced spontaneous free-carrier generation in semiconducting single-walled carbon nanotubes.
    Park J; Reid OG; Blackburn JL; Rumbles G
    Nat Commun; 2015 Nov; 6():8809. PubMed ID: 26531728
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of exciton dimensionality on spectral diffusion of single-walled carbon nanotubes.
    Ma X; Roslyak O; Wang F; Duque JG; Piryatinski A; Doorn SK; Htoon H
    ACS Nano; 2014 Oct; 8(10):10613-20. PubMed ID: 25251324
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Superlocalization of Excitons in Carbon Nanotubes at Cryogenic Temperature.
    Raynaud C; Claude T; Borel A; Amara MR; Graf A; Zaumseil J; Lauret JS; Chassagneux Y; Voisin C
    Nano Lett; 2019 Oct; 19(10):7210-7216. PubMed ID: 31487461
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How to recognize clustering of luminescent defects in single-wall carbon nanotubes.
    Sebastian FL; Settele S; Li H; Flavel BS; Zaumseil J
    Nanoscale Horiz; 2024 Nov; 9(12):2286-2294. PubMed ID: 39380328
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mapping charge transport by electroluminescence in chirality-selected carbon nanotube networks.
    Jakubka F; Backes C; Gannott F; Mundloch U; Hauke F; Hirsch A; Zaumseil J
    ACS Nano; 2013 Aug; 7(8):7428-35. PubMed ID: 23915032
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photoluminescence Dynamics Defined by Exciton Trapping Potential of Coupled Defect States in DNA-Functionalized Carbon Nanotubes.
    Zheng Y; Weight BM; Jones AC; Chandrasekaran V; Gifford BJ; Tretiak S; Doorn SK; Htoon H
    ACS Nano; 2021 Jan; 15(1):923-933. PubMed ID: 33395262
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancement of Photoluminescence from Semiconducting Nanotubes in Aqueous Suspensions due to Cysteine and Dithiothreitol Doping: Influence of the Sonication Treatment.
    Kurnosov NV; Leontiev VS; Karachevtsev VA
    Nanoscale Res Lett; 2016 Dec; 11(1):490. PubMed ID: 27822912
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photoexcited Aromatic Reactants Give Multicolor Carbon Nanotube Fluorescence from Quantum Defects.
    Zheng Y; Bachilo SM; Weisman RB
    ACS Nano; 2020 Jan; 14(1):715-723. PubMed ID: 31887007
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct observation of deep excitonic states in the photoluminescence spectra of single-walled carbon nanotubes.
    Kiowski O; Arnold K; Lebedkin S; Hennrich F; Kappes MM
    Phys Rev Lett; 2007 Dec; 99(23):237402. PubMed ID: 18233410
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding the excitation wavelength dependent spectral shift and large exciton binding energy of tungsten disulfide quantum dots and its interaction with single-walled carbon nanotubes.
    Bora A; Mawlong LPL; Das R; Giri PK
    J Colloid Interface Sci; 2020 Mar; 561():519-532. PubMed ID: 31740135
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phonon-assisted excitonic recombination channels observed in DNA-wrapped carbon nanotubes using photoluminescence spectroscopy.
    Chou SG; Plentz F; Jiang J; Saito R; Nezich D; Ribeiro HB; Jorio A; Pimenta MA; Samsonidze GG; Santos AP; Zheng M; Onoa GB; Semke ED; Dresselhaus G; Dresselhaus MS
    Phys Rev Lett; 2005 Apr; 94(12):127402. PubMed ID: 15903960
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Population of Exciton-Polaritons
    Lüttgens JM; Berger FJ; Zaumseil J
    ACS Photonics; 2021 Jan; 8(1):182-193. PubMed ID: 33506074
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electroluminescence from electrolyte-gated carbon nanotube field-effect transistors.
    Zaumseil J; Ho X; Guest JR; Wiederrecht GP; Rogers JA
    ACS Nano; 2009 Aug; 3(8):2225-34. PubMed ID: 19634895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.