These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35732165)

  • 1. Centerline extraction by neighborhood-statistics thinning for quantitative analysis of corneal nerve fibers.
    Chen Z; Yin X; Lin L; Shi G; Mo J
    Phys Med Biol; 2022 Jul; 67(14):. PubMed ID: 35732165
    [No Abstract]   [Full Text] [Related]  

  • 2. [State of corneal nerve fibers in systemic amyloidosis].
    Avetisov SE; Surnina ZV; Zinovyeva OE; Safiulina EI; Shcheglova NS; Nosovsky AM
    Vestn Oftalmol; 2021; 137(5. Vyp. 2):231-237. PubMed ID: 34669332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Confocal microscopy of the corneal nerve fibers].
    Avetisov SE; Surnina ZV
    Vestn Oftalmol; 2023; 139(3. Vyp. 2):38-45. PubMed ID: 37144367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Changes in corneal nerves fibers in the early stages of Parkinson's disease according to in vivo confocal microscopy (preliminary report)].
    Avetisov SE; Karabanov AV; Surnina ZV; Gamidov AA
    Vestn Oftalmol; 2020; 136(5. Vyp. 2):191-196. PubMed ID: 33063963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Early diagnosis of diabetic polyneuropathy based on the results of corneal nerve fibers examination].
    Avetisov SE; Chernenkova NA; Surnina ZV; Akhmedzhanova LT; Fokina AS; Strokov IA
    Vestn Oftalmol; 2020; 136(5. Vyp. 2):155-162. PubMed ID: 33063958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Deep Learning Model for Automated Sub-Basal Corneal Nerve Segmentation and Evaluation Using In Vivo Confocal Microscopy.
    Wei S; Shi F; Wang Y; Chou Y; Li X
    Transl Vis Sci Technol; 2020 Jun; 9(2):32. PubMed ID: 32832205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated Tortuosity Analysis of Nerve Fibers in Corneal Confocal Microscopy.
    Zhao Y; Zhang J; Pereira E; Zheng Y; Su P; Xie J; Zhao Y; Shi Y; Qi H; Liu J; Liu Y
    IEEE Trans Med Imaging; 2020 Sep; 39(9):2725-2737. PubMed ID: 32078542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segmentation and Evaluation of Corneal Nerves and Dendritic Cells From In Vivo Confocal Microscopy Images Using Deep Learning.
    Setu MAK; Schmidt S; Musial G; Stern ME; Steven P
    Transl Vis Sci Technol; 2022 Jun; 11(6):24. PubMed ID: 35762938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepGrading: Deep Learning Grading of Corneal Nerve Tortuosity.
    Mou L; Qi H; Liu Y; Zheng Y; Matthew P; Su P; Liu J; Zhang J; Zhao Y
    IEEE Trans Med Imaging; 2022 Aug; 41(8):2079-2091. PubMed ID: 35245193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of Toxic Keratopathy, an In Vivo Confocal Microscopy Study.
    Wang L; Zhang Y; Wei Z; Cao K; Su G; Hamrah P; Labbe A; Liang Q
    Transl Vis Sci Technol; 2021 Sep; 10(11):11. PubMed ID: 34495329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel method to model hepatic vascular network using vessel segmentation, thinning, and completion.
    Guo X; Xiao R; Zhang T; Chen C; Wang J; Wang Z
    Med Biol Eng Comput; 2020 Apr; 58(4):709-724. PubMed ID: 31955327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [New approach to corneal nerve fibers morphometry in diabetes mellitus on the basis of confocal biomicroscopy].
    Avetisov SE; Novikov IA; Makhotin SS; Surnina ZV
    Vestn Oftalmol; 2015; 131(4):5-14. PubMed ID: 26489114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate airway centerline extraction based on topological thinning using graph-theoretic analysis.
    Bian Z; Tan W; Yang J; Liu J; Zhao D
    Biomed Mater Eng; 2014; 24(6):3239-49. PubMed ID: 25227033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A robust construction algorithm of the centerline skeleton for complex aortic vascular structure using computational fluid dynamics.
    Touati J; Bologna M; Schwein A; Migliavacca F; Garbey M
    Comput Biol Med; 2017 Jul; 86():6-17. PubMed ID: 28494383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing performance of centerline algorithms for quantitative assessment of brain vascular anatomy.
    Diedrich KT; Roberts JA; Schmidt RH; Parker DL
    Anat Rec (Hoboken); 2012 Dec; 295(12):2179-90. PubMed ID: 23060363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A monocentric centerline extraction method for ring-like blood vessels.
    Zhao F; Sun F; Hou Y; Chen Y; Chen D; Cao X; Yi H; Wang B; He X; Liang J
    Med Biol Eng Comput; 2018 Apr; 56(4):695-707. PubMed ID: 28864847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GPU accelerated segmentation and centerline extraction of tubular structures from medical images.
    Smistad E; Elster AC; Lindseth F
    Int J Comput Assist Radiol Surg; 2014 Jul; 9(4):561-75. PubMed ID: 24177985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fully automated tortuosity quantification system with application to corneal nerve fibres in confocal microscopy images.
    Annunziata R; Kheirkhah A; Aggarwal S; Hamrah P; Trucco E
    Med Image Anal; 2016 Aug; 32():216-32. PubMed ID: 27136674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier.
    Wolterink JM; van Hamersvelt RW; Viergever MA; Leiner T; Išgum I
    Med Image Anal; 2019 Jan; 51():46-60. PubMed ID: 30388501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corneal nerve tortuosity grading via ordered weighted averaging-based feature extraction.
    Su P; Chen T; Xie J; Zheng Y; Qi H; Borroni D; Zhao Y; Liu J
    Med Phys; 2020 Oct; 47(10):4983-4996. PubMed ID: 32761618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.