These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 35732166)
21. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix. Shin YJ; Shafranek RT; Tsui JH; Walcott J; Nelson A; Kim DH Acta Biomater; 2021 Jan; 119():75-88. PubMed ID: 33166713 [TBL] [Abstract][Full Text] [Related]
22. Hydrogel Bioink Reinforcement for Additive Manufacturing: A Focused Review of Emerging Strategies. Chimene D; Kaunas R; Gaharwar AK Adv Mater; 2020 Jan; 32(1):e1902026. PubMed ID: 31599073 [TBL] [Abstract][Full Text] [Related]
23. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992 [TBL] [Abstract][Full Text] [Related]
24. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Pati F; Jang J; Ha DH; Won Kim S; Rhie JW; Shim JH; Kim DH; Cho DW Nat Commun; 2014 Jun; 5():3935. PubMed ID: 24887553 [TBL] [Abstract][Full Text] [Related]
25. A 3D cell printed muscle construct with tissue-derived bioink for the treatment of volumetric muscle loss. Choi YJ; Jun YJ; Kim DY; Yi HG; Chae SH; Kang J; Lee J; Gao G; Kong JS; Jang J; Chung WK; Rhie JW; Cho DW Biomaterials; 2019 Jun; 206():160-169. PubMed ID: 30939408 [TBL] [Abstract][Full Text] [Related]
26. Development of agarose-gelatin bioinks for extrusion-based bioprinting and cell encapsulation. Dravid A; McCaughey-Chapman A; Raos B; O'Carroll SJ; Connor B; Svirskis D Biomed Mater; 2022 Jun; 17(5):. PubMed ID: 35654031 [TBL] [Abstract][Full Text] [Related]
27. Designing vascular supportive albumen-rich composite bioink for organ 3D printing. Liu S; Zhang H; Hu Q; Shen Z; Rana D; Ramalingam M J Mech Behav Biomed Mater; 2020 Apr; 104():103642. PubMed ID: 32174400 [TBL] [Abstract][Full Text] [Related]
28. Production of a Bioink Containing Decellularized Spinal Cord Tissue for 3D Bioprinting. Santos MGD; França FS; Prestes JP; Teixeira C; Sommer LC; Sperling LE; Pranke P Tissue Eng Part A; 2024 Jan; 30(1-2):61-74. PubMed ID: 37772706 [TBL] [Abstract][Full Text] [Related]
29. Kong JS; Kim JJ; Riva L; Ginestra PS; Cho DW Biofabrication; 2024 Aug; 16(4):. PubMed ID: 39142325 [TBL] [Abstract][Full Text] [Related]
30. Optimization of collagen type I-hyaluronan hybrid bioink for 3D bioprinted liver microenvironments. Mazzocchi A; Devarasetty M; Huntwork R; Soker S; Skardal A Biofabrication; 2018 Oct; 11(1):015003. PubMed ID: 30270846 [TBL] [Abstract][Full Text] [Related]
31. A targeted rheological bioink development guideline and its systematic correlation with printing behavior. Pössl A; Hartzke D; Schmidts TM; Runkel FE; Schlupp P Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33472177 [TBL] [Abstract][Full Text] [Related]
32. Crosslinker-free silk/decellularized extracellular matrix porous bioink for 3D bioprinting-based cartilage tissue engineering. Zhang X; Liu Y; Luo C; Zhai C; Li Z; Zhang Y; Yuan T; Dong S; Zhang J; Fan W Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111388. PubMed ID: 33254994 [TBL] [Abstract][Full Text] [Related]
33. Decellularized ECM-derived bioinks: Prospects for the future. Kabirian F; Mozafari M Methods; 2020 Jan; 171():108-118. PubMed ID: 31051254 [TBL] [Abstract][Full Text] [Related]
34. Development of Liver Decellularized Extracellular Matrix Bioink for Three-Dimensional Cell Printing-Based Liver Tissue Engineering. Lee H; Han W; Kim H; Ha DH; Jang J; Kim BS; Cho DW Biomacromolecules; 2017 Apr; 18(4):1229-1237. PubMed ID: 28277649 [TBL] [Abstract][Full Text] [Related]
35. Decellularized Extracellular Matrix-Based Bioinks for Tendon Regeneration in Three-Dimensional Bioprinting. Al-Hakim Khalak F; García-Villén F; Ruiz-Alonso S; Pedraz JL; Saenz-Del-Burgo L Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361719 [TBL] [Abstract][Full Text] [Related]
36. Hyaluronic acid based next generation bioink for 3D bioprinting of human stem cell derived corneal stromal model with innervation. Mörö A; Samanta S; Honkamäki L; Rangasami VK; Puistola P; Kauppila M; Narkilahti S; Miettinen S; Oommen O; Skottman H Biofabrication; 2022 Dec; 15(1):. PubMed ID: 36579828 [TBL] [Abstract][Full Text] [Related]
37. An injectable bioink with rapid prototyping in the air and Zhou Y; Liao S; Chu Y; Yuan B; Tao X; Hu X; Wang Y Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34488216 [TBL] [Abstract][Full Text] [Related]
38. Development of a novel thermogelling PEC-based ECM mimicking nanocomposite bioink for bone tissue engineering. Bharadwaj T; Chrungoo S; Verma D J Biomater Sci Polym Ed; 2023 Dec; 34(18):2516-2536. PubMed ID: 37768276 [TBL] [Abstract][Full Text] [Related]
39. 3D cell-printing of biocompatible and functional meniscus constructs using meniscus-derived bioink. Chae S; Lee SS; Choi YJ; Hong DH; Gao G; Wang JH; Cho DW Biomaterials; 2021 Jan; 267():120466. PubMed ID: 33130320 [TBL] [Abstract][Full Text] [Related]
40. Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2-induced photo-crosslinking. Jang J; Kim TG; Kim BS; Kim SW; Kwon SM; Cho DW Acta Biomater; 2016 Mar; 33():88-95. PubMed ID: 26774760 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]