These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 35732198)
1. Flexion of Nrf2 by tea phytochemicals: A review on the chemopreventive and chemotherapeutic implications. Datta S; Ghosh S; Bishayee A; Sinha D Pharmacol Res; 2022 Aug; 182():106319. PubMed ID: 35732198 [TBL] [Abstract][Full Text] [Related]
2. Targeting Nrf2-Keap1 signaling for chemoprevention of skin carcinogenesis with bioactive phytochemicals. Chun KS; Kundu J; Kundu JK; Surh YJ Toxicol Lett; 2014 Aug; 229(1):73-84. PubMed ID: 24875534 [TBL] [Abstract][Full Text] [Related]
3. Discovery of Keap1-Nrf2 small-molecule inhibitors from phytochemicals based on molecular docking. Li M; Huang W; Jie F; Wang M; Zhong Y; Chen Q; Lu B Food Chem Toxicol; 2019 Nov; 133():110758. PubMed ID: 31412289 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of the NRF2/KEAP1 Axis: A Promising Therapeutic Strategy to Alter Redox Balance of Cancer Cells. Panieri E; Saso L Antioxid Redox Signal; 2021 Jun; 34(18):1428-1483. PubMed ID: 33403898 [No Abstract] [Full Text] [Related]
5. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Surh YJ; Kundu JK; Na HK Planta Med; 2008 Oct; 74(13):1526-39. PubMed ID: 18937164 [TBL] [Abstract][Full Text] [Related]
6. Epigallocatechin gallate upregulates NRF2 to prevent diabetic nephropathy via disabling KEAP1. Sun W; Liu X; Zhang H; Song Y; Li T; Liu X; Liu Y; Guo L; Wang F; Yang T; Guo W; Wu J; Jin H; Wu H Free Radic Biol Med; 2017 Jul; 108():840-857. PubMed ID: 28457936 [TBL] [Abstract][Full Text] [Related]
7. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Jaramillo MC; Zhang DD Genes Dev; 2013 Oct; 27(20):2179-91. PubMed ID: 24142871 [TBL] [Abstract][Full Text] [Related]
8. Screening of phytochemicals against Keap1- NRF2 interaction to reactivate NRF2 Functioning: Pharmacoinformatics based approach. Akmal A; Javaid A; Hussain R; Kanwal A; Zubair M; Ashfaq UA Pak J Pharm Sci; 2019 Nov; 32(6(Supplementary)):2823-2828. PubMed ID: 32024620 [TBL] [Abstract][Full Text] [Related]
9. Stress-sensing mechanisms and the physiological roles of the Keap1-Nrf2 system during cellular stress. Suzuki T; Yamamoto M J Biol Chem; 2017 Oct; 292(41):16817-16824. PubMed ID: 28842501 [TBL] [Abstract][Full Text] [Related]
10. Dual roles and therapeutic potential of Keap1-Nrf2 pathway in pancreatic cancer: a systematic review. Qin JJ; Cheng XD; Zhang J; Zhang WD Cell Commun Signal; 2019 Sep; 17(1):121. PubMed ID: 31511020 [TBL] [Abstract][Full Text] [Related]
11. Natural dietary anti-cancer chemopreventive compounds: redox-mediated differential signaling mechanisms in cytoprotection of normal cells versus cytotoxicity in tumor cells. Nair S; Li W; Kong AN Acta Pharmacol Sin; 2007 Apr; 28(4):459-72. PubMed ID: 17376285 [TBL] [Abstract][Full Text] [Related]
12. Miconazole Contributes to NRF2 Activation by Noncanonical P62-KEAP1 Pathway in Bladder Cancer Cells. Tsai TF; Chen PC; Lin YC; Chou KY; Chen HE; Ho CY; Lin JF; Hwang TI Drug Des Devel Ther; 2020; 14():1209-1218. PubMed ID: 32273683 [TBL] [Abstract][Full Text] [Related]
13. Multiple regulations of Keap1/Nrf2 system by dietary phytochemicals. Qin S; Hou DX Mol Nutr Food Res; 2016 Aug; 60(8):1731-55. PubMed ID: 27523917 [TBL] [Abstract][Full Text] [Related]
14. Directly interact with Keap1 and LPS is involved in the anti-inflammatory mechanisms of (-)-epicatechin-3-gallate in LPS-induced macrophages and endotoxemia. Chiou YS; Huang Q; Ho CT; Wang YJ; Pan MH Free Radic Biol Med; 2016 May; 94():1-16. PubMed ID: 26878775 [TBL] [Abstract][Full Text] [Related]
15. Black tea bioactive phytoconstituents realign NRF2 for anticancer activity in lung adenocarcinoma. Datta S; Bishayee A; Sinha D Front Pharmacol; 2023; 14():1176819. PubMed ID: 37305533 [TBL] [Abstract][Full Text] [Related]
16. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Hayes JD; McMahon M; Chowdhry S; Dinkova-Kostova AT Antioxid Redox Signal; 2010 Dec; 13(11):1713-48. PubMed ID: 20446772 [TBL] [Abstract][Full Text] [Related]
17. The Keap1-Nrf2-ARE Pathway As a Potential Preventive and Therapeutic Target: An Update. Lu MC; Ji JA; Jiang ZY; You QD Med Res Rev; 2016 Sep; 36(5):924-63. PubMed ID: 27192495 [TBL] [Abstract][Full Text] [Related]
18. Effects of deficiency of Kelch-like ECH-associated protein 1 on skeletal organization: a mechanism for diminished nuclear factor of activated T cells cytoplasmic 1 during osteoclastogenesis. Sakai E; Morita M; Ohuchi M; Kido MA; Fukuma Y; Nishishita K; Okamoto K; Itoh K; Yamamoto M; Tsukuba T FASEB J; 2017 Sep; 31(9):4011-4022. PubMed ID: 28515152 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of miR-200a protects cardiomyocytes against hypoxia-induced apoptosis by modulating the kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2 signaling axis. Sun X; Zuo H; Liu C; Yang Y Int J Mol Med; 2016 Oct; 38(4):1303-11. PubMed ID: 27573160 [TBL] [Abstract][Full Text] [Related]
20. Attenuation of Nrf2/Keap1/ARE in Alzheimer's Disease by Plant Secondary Metabolites: A Mechanistic Review. Fakhri S; Pesce M; Patruno A; Moradi SZ; Iranpanah A; Farzaei MH; Sobarzo-Sánchez E Molecules; 2020 Oct; 25(21):. PubMed ID: 33114450 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]