These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 35732624)
1. Nano- to macro-scale control of 3D printed materials via polymerization induced microphase separation. Bobrin VA; Yao Y; Shi X; Xiu Y; Zhang J; Corrigan N; Boyer C Nat Commun; 2022 Jun; 13(1):3577. PubMed ID: 35732624 [TBL] [Abstract][Full Text] [Related]
2. Designing Nanostructured 3D Printed Materials by Controlling Macromolecular Architecture. Shi X; Bobrin VA; Yao Y; Zhang J; Corrigan N; Boyer C Angew Chem Int Ed Engl; 2022 Aug; 61(35):e202206272. PubMed ID: 35732587 [TBL] [Abstract][Full Text] [Related]
3. Effect of Macromolecular Structure on Phase Separation Regime in 3D Printed Materials. Xiu Y; Bobrin VA; Corrigan N; Zhang J; Boyer C Macromol Rapid Commun; 2023 Dec; 44(24):e2300236. PubMed ID: 37289980 [TBL] [Abstract][Full Text] [Related]
4. Nanostructure Control in 3D Printed Materials. Bobrin VA; Lee K; Zhang J; Corrigan N; Boyer C Adv Mater; 2022 Jan; 34(4):e2107643. PubMed ID: 34742167 [TBL] [Abstract][Full Text] [Related]
5. Polymerization Induced Microphase Separation of ABC Triblock Copolymers for 3D Printing Nanostructured Materials. Shi X; Yao Y; Zhang J; Corrigan N; Boyer C Small; 2024 Sep; 20(39):e2305268. PubMed ID: 37661582 [TBL] [Abstract][Full Text] [Related]
6. Customized Nanostructured Ceramics via Microphase Separation 3D Printing. Bobrin VA; Hackbarth HG; Yao Y; Bedford NM; Zhang J; Corrigan N; Boyer C Adv Sci (Weinh); 2023 Nov; 10(32):e2304734. PubMed ID: 37750431 [TBL] [Abstract][Full Text] [Related]
7. On-Demand Tunability of Microphase Separation Structure of 3D Printing Material by Reversible Addition/Fragmentation Chain Transfer Polymerization. Mukai M; Sato M; Miyadai W; Maruo S Polymers (Basel); 2023 Aug; 15(17):. PubMed ID: 37688145 [TBL] [Abstract][Full Text] [Related]
8. Polymerization Induced Microphase Separation for the Fabrication of Nanostructured Materials. Lee K; Corrigan N; Boyer C Angew Chem Int Ed Engl; 2023 Oct; 62(44):e202307329. PubMed ID: 37429822 [TBL] [Abstract][Full Text] [Related]
9. 3D Printing Nanostructured Solid Polymer Electrolytes with High Modulus and Conductivity. Lee K; Shang Y; Bobrin VA; Kuchel R; Kundu D; Corrigan N; Boyer C Adv Mater; 2022 Oct; 34(42):e2204816. PubMed ID: 36007199 [TBL] [Abstract][Full Text] [Related]
10. 3D Printing and In Situ Surface Modification via Type I Photoinitiated Reversible Addition-Fragmentation Chain Transfer Polymerization. Corrigan N; Boyer C J Vis Exp; 2022 Feb; (180):. PubMed ID: 35253792 [TBL] [Abstract][Full Text] [Related]
11. 3D Printed Solid Polymer Electrolytes with Bicontinuous Nanoscopic Domains for Ionic Liquid Conduction and Energy Storage. Melodia D; Bhadra A; Lee K; Kuchel R; Kundu D; Corrigan N; Boyer C Small; 2023 Dec; 19(50):e2206639. PubMed ID: 36737816 [TBL] [Abstract][Full Text] [Related]
12. Tuning the Mechanical Properties of 3D-printed Objects by Mixing Chain Transfer Agents in Radical Promoted Cationic RAFT Polymerization. Li G; Zhao B; Zhu Y; He S; Li J; Zhu J; Li N Macromol Rapid Commun; 2024 Nov; 45(22):e2400515. PubMed ID: 39122478 [TBL] [Abstract][Full Text] [Related]
13. Tuning the Mechanical Properties of 3D-Printed Objects by Mixing Chain Transfer Agents in Norrish Type I Photoinitiated RAFT Polymerization. Yuan Z; Li G; Yang C; Zhu W; Li J; Zhu J Chem Asian J; 2024 Sep; 19(18):e202400648. PubMed ID: 38946109 [TBL] [Abstract][Full Text] [Related]
14. Tuning the Mechanical Properties of 3D-printed Objects by the RAFT Process: From Chain-Growth to Step-Growth. Pan X; Li J; Li Z; Li Q; Pan X; Zhang Z; Zhu J Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202318564. PubMed ID: 38230985 [TBL] [Abstract][Full Text] [Related]
15. A Versatile 3D and 4D Printing System through Photocontrolled RAFT Polymerization. Zhang Z; Corrigan N; Bagheri A; Jin J; Boyer C Angew Chem Int Ed Engl; 2019 Dec; 58(50):17954-17963. PubMed ID: 31642580 [TBL] [Abstract][Full Text] [Related]
16. Mechanical properties, accuracy, and cytotoxicity of UV-polymerized 3D printing resins composed of Bis-EMA, UDMA, and TEGDMA. Lin CH; Lin YM; Lai YL; Lee SY J Prosthet Dent; 2020 Feb; 123(2):349-354. PubMed ID: 31202550 [TBL] [Abstract][Full Text] [Related]
17. 3D printing of inherently nanoporous polymers via polymerization-induced phase separation. Dong Z; Cui H; Zhang H; Wang F; Zhan X; Mayer F; Nestler B; Wegener M; Levkin PA Nat Commun; 2021 Jan; 12(1):247. PubMed ID: 33431911 [TBL] [Abstract][Full Text] [Related]
18. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017 [TBL] [Abstract][Full Text] [Related]
19. Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers. Ruiz-Cantu L; F Trindade G; Taresco V; Zhou Z; He Y; Burroughs L; Clark EA; Rose FRAJ; Tuck C; Hague R; Roberts CJ; Alexander M; Irvine DJ; Wildman RD ACS Appl Mater Interfaces; 2021 Aug; 13(33):38969-38978. PubMed ID: 34399054 [TBL] [Abstract][Full Text] [Related]
20. High-Performance Cyanate Ester Resins with Interpenetration Networks for 3D Printing. Zhou ZX; Li Y; Zhong J; Luo Z; Gong CR; Zheng YQ; Peng S; Yu LM; Wu L; Xu Y ACS Appl Mater Interfaces; 2020 Aug; 12(34):38682-38689. PubMed ID: 32846486 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]