These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35732678)

  • 1. Top-down control of planktonic ciliates by microcrustacean predators is stronger in lakes than in the ocean.
    Lu X; Weisse T
    Sci Rep; 2022 Jun; 12(1):10501. PubMed ID: 35732678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bottom-up versus top-down effects on ciliate community composition in four eutrophic lakes (China).
    Li J; Chen F; Liu Z; Zhao X; Yang K; Lu W; Cui K
    Eur J Protistol; 2016 Apr; 53():20-30. PubMed ID: 26773905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paleoreconstructions of ciliate communities reveal long-term ecological changes in temperate lakes.
    Barouillet C; Vasselon V; Keck F; Millet L; Etienne D; Galop D; Rius D; Domaizon I
    Sci Rep; 2022 May; 12(1):7899. PubMed ID: 35551223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Full-depth vertical distribution of planktonic ciliates (Ciliophora) and a novel bio-index for indicating habitat suitability of tintinnid in the Arctic Ocean.
    Wang C; Wang X; Xu Z; Luo G; Chen C; Li H; Liu Y; Li J; He J; Chen H; Zhang W
    Mar Environ Res; 2023 Apr; 186():105924. PubMed ID: 36812840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cladocerans versus copepods: the cause of contrasting top-down controls on freshwater and marine phytoplankton.
    Sommer U; Sommer F
    Oecologia; 2006 Mar; 147(2):183-94. PubMed ID: 16341887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Behavior of Planktonic Copepods Minimizes the Entry of Microplastics in Marine Food Webs.
    Rodríguez Torres R; Almeda R; Xu J; Hartmann N; Rist S; Brun P; Nielsen TG
    Environ Sci Technol; 2023 Jan; 57(1):179-189. PubMed ID: 36548351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functionally similar species of ciliates have similar dynamics: A biennial survey study in a large eutrophic lake.
    Li J; Chen F; Yang K; Lu W; Cui K
    Eur J Protistol; 2022 Feb; 82():125844. PubMed ID: 34973632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermittency in processing explains the diversity and shape of functional grazing responses.
    Wirtz KW
    Oecologia; 2012 Aug; 169(4):879-94. PubMed ID: 22311253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From plankton to top predators: bottom-up control of a marine food web across four trophic levels.
    Frederiksen M; Edwards M; Richardson AJ; Halliday NC; Wanless S
    J Anim Ecol; 2006 Nov; 75(6):1259-68. PubMed ID: 17032358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevalent ciliate symbiosis on copepods: high genetic diversity and wide distribution detected using small subunit ribosomal RNA gene.
    Guo Z; Liu S; Hu S; Li T; Huang Y; Liu G; Zhang H; Lin S
    PLoS One; 2012; 7(9):e44847. PubMed ID: 23024768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Planktonic ciliate community structure in shallow lakes of lowland Western Europe.
    Van Wichelen J; Johansson LS; Vanormelingen P; Declerck SA; Lauridsen TL; De Meester L; Jeppesen E; Vyverman W
    Eur J Protistol; 2013 Nov; 49(4):538-51. PubMed ID: 23890772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Tara Oceans voyage reveals global diversity and distribution patterns of marine planktonic ciliates.
    Gimmler A; Korn R; de Vargas C; Audic S; Stoeck T
    Sci Rep; 2016 Sep; 6():33555. PubMed ID: 27633177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial Food-Web Drivers in Tropical Reservoirs.
    Domingues CD; da Silva LH; Rangel LM; de Magalhães L; de Melo Rocha A; Lobão LM; Paiva R; Roland F; Sarmento H
    Microb Ecol; 2017 Apr; 73(3):505-520. PubMed ID: 27900461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Container volume may affect growth rates of ciliates and clearance rates of their microcrustacean predators in microcosm experiments.
    Weisse T; Lukić D; Lu X
    J Plankton Res; 2021; 43(2):288-299. PubMed ID: 33814976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional diversity of aquatic ciliates.
    Weisse T
    Eur J Protistol; 2017 Oct; 61(Pt B):331-358. PubMed ID: 28623024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ciliate diversity and distribution across horizontal and vertical scales in the open ocean.
    Canals O; Obiol A; Muhovic I; Vaqué D; Massana R
    Mol Ecol; 2020 Aug; 29(15):2824-2839. PubMed ID: 32618376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Planktonic ciliates in a hypertrophic pond: functional role and importance.
    Sanchez Rodriguez Mdel R; Lugo Vazquez A; Oliva Martinez MG; Verver y Vargas JG; Rodriguez Rocha A; Peralta Soriano L
    J Environ Biol; 2011 Jul; 32(4):497-503. PubMed ID: 22315829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CARD-FISH and prey tracer techniques reveal the role of overlooked flagellate groups as major bacterivores in freshwater hypertrophic shallow lakes.
    Šimek K; Mukherjee I; Nedoma J; de Paula CCP; Jezberová J; Sirová D; Vrba J
    Environ Microbiol; 2022 Sep; 24(9):4256-4273. PubMed ID: 34933408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water mass shapes the distribution patterns of planktonic ciliates (Alveolata, Ciliophora) in the subtropical Pearl River Estuary.
    Gu B; Wang Y; Xu J; Jiao N; Xu D
    Mar Pollut Bull; 2021 Jun; 167():112341. PubMed ID: 33865041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composition and distribution of planktonic ciliates with indications to water quality in a shallow hypersaline lagoon (Pulicat Lake, India).
    Basuri CK; Pazhaniyappan E; Munnooru K; Chandrasekaran M; Vinjamuri RR; Karri R; Mallavarapu RV
    Environ Sci Pollut Res Int; 2020 May; 27(15):18303-18316. PubMed ID: 32185733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.