These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35732690)

  • 1. A novel machine learning model to predict respiratory failure and invasive mechanical ventilation in critically ill patients suffering from COVID-19.
    Bendavid I; Statlender L; Shvartser L; Teppler S; Azullay R; Sapir R; Singer P
    Sci Rep; 2022 Jun; 12(1):10573. PubMed ID: 35732690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning from past respiratory failure patients to triage COVID-19 patient ventilator needs: A multi-institutional study.
    Carmichael H; Coquet J; Sun R; Sang S; Groat D; Asch SM; Bledsoe J; Peltan ID; Jacobs JR; Hernandez-Boussard T
    J Biomed Inform; 2021 Jul; 119():103802. PubMed ID: 33965640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Derivation and external validation of predictive models for invasive mechanical ventilation in intensive care unit patients with COVID-19.
    Maia G; Martins CM; Marques V; Christovam S; Prado I; Moraes B; Rezoagli E; Foti G; Zambelli V; Cereda M; Berra L; Rocco PRM; Cruz MR; Samary CDS; Guimarães FS; Silva PL
    Ann Intensive Care; 2024 Aug; 14(1):129. PubMed ID: 39167241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinically applicable approach for predicting mechanical ventilation in patients with COVID-19.
    Douville NJ; Douville CB; Mentz G; Mathis MR; Pancaro C; Tremper KK; Engoren M
    Br J Anaesth; 2021 Mar; 126(3):578-589. PubMed ID: 33454051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validation.
    Mamandipoor B; Frutos-Vivar F; Peñuelas O; Rezar R; Raymondos K; Muriel A; Du B; Thille AW; Ríos F; González M; Del-Sorbo L; Del Carmen Marín M; Pinheiro BV; Soares MA; Nin N; Maggiore SM; Bersten A; Kelm M; Bruno RR; Amin P; Cakar N; Suh GY; Abroug F; Jibaja M; Matamis D; Zeggwagh AA; Sutherasan Y; Anzueto A; Wernly B; Esteban A; Jung C; Osmani V
    BMC Med Inform Decis Mak; 2021 May; 21(1):152. PubMed ID: 33962603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Hybrid Decision Tree and Deep Learning Approach Combining Medical Imaging and Electronic Medical Records to Predict Intubation Among Hospitalized Patients With COVID-19: Algorithm Development and Validation.
    Nguyen KA; Tandon P; Ghanavati S; Cheetirala SN; Timsina P; Freeman R; Reich D; Levin MA; Mazumdar M; Fayad ZA; Kia A
    JMIR Form Res; 2023 Oct; 7():e46905. PubMed ID: 37883177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early Usage of Extracorporeal Membrane Oxygenation in the Absence of Invasive Mechanical Ventilation to Treat COVID-19-related Hypoxemic Respiratory Failure.
    Loyalka P; Cheema FH; Rao H; Rame JE; Rajagopal K
    ASAIO J; 2021 Apr; 67(4):392-394. PubMed ID: 33769994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elevation of D-dimer levels are associated with early need for mechanical ventilation support in patients with COVID-19.
    Ali A; Liang W; Abdelhafiz AS; Saleh MM; Salem H; Moazen EM; Elmazny MI; Rakha MA; Elfeky SEF
    BMC Pulm Med; 2023 Aug; 23(1):283. PubMed ID: 37537520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early prediction of noninvasive ventilation failure after extubation: development and validation of a machine-learning model.
    Wang H; Zhao QY; Luo JC; Liu K; Yu SJ; Ma JF; Luo MH; Hao GW; Su Y; Zhang YJ; Tu GW; Luo Z
    BMC Pulm Med; 2022 Aug; 22(1):304. PubMed ID: 35941641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous pneumomediastinum: a surrogate of P-SILI in critically ill COVID-19 patients.
    Elabbadi A; Urbina T; Berti E; Contou D; Plantefève G; Soulier Q; Milon A; Carteaux G; Voiriot G; Fartoukh M; Gibelin A
    Crit Care; 2022 Nov; 26(1):350. PubMed ID: 36371306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endotracheal intubation rate is lower with additional face-mask noninvasive ventilation for critically-ill SARS-CoV-2 patients requiring high-flow nasal oxygen: a retrospective bicentric cohort with propensity score analysis.
    Urbina T; Elabbadi A; Gabarre P; Bigé N; Turpin M; Bonny V; Desnos C; Baudel JL; Lavillegrand JR; Hariri G; Fartoukh M; Guidet B; Maury E; Dumas G; Voiriot G; Ait-Oufella H
    Minerva Anestesiol; 2022; 88(7-8):580-587. PubMed ID: 35191641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implications of early respiratory support strategies on disease progression in critical COVID-19: a matched subanalysis of the prospective RISC-19-ICU cohort.
    Wendel Garcia PD; Aguirre-Bermeo H; Buehler PK; Alfaro-Farias M; Yuen B; David S; Tschoellitsch T; Wengenmayer T; Korsos A; Fogagnolo A; Kleger GR; Wu MA; Colombo R; Turrini F; Potalivo A; Rezoagli E; Rodríguez-García R; Castro P; Lander-Azcona A; Martín-Delgado MC; Lozano-Gómez H; Ensner R; Michot MP; Gehring N; Schott P; Siegemund M; Merki L; Wiegand J; Jeitziner MM; Laube M; Salomon P; Hillgaertner F; Dullenkopf A; Ksouri H; Cereghetti S; Grazioli S; Bürkle C; Marrel J; Fleisch I; Perez MH; Baltussen Weber A; Ceruti S; Marquardt K; Hübner T; Redecker H; Studhalter M; Stephan M; Selz D; Pietsch U; Ristic A; Heise A; Meyer Zu Bentrup F; Franchitti Laurent M; Fodor P; Gaspert T; Haberthuer C; Colak E; Heuberger DM; Fumeaux T; Montomoli J; Guerci P; Schuepbach RA; Hilty MP; Roche-Campo F;
    Crit Care; 2021 May; 25(1):175. PubMed ID: 34034782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictors of mechanical ventilation and mortality in critically ill patients with COVID-19 pneumonia.
    Muñoz Lezcano S; Armengol de la Hoz MÁ; Corbi A; López F; García MS; Reiz AN; González TF; Zlatkov VY
    Med Intensiva (Engl Ed); 2024 Jan; 48(1):3-13. PubMed ID: 37500305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Risk factors for adverse outcomes during mechanical ventilation of 1152 COVID-19 patients: a multicenter machine learning study with highly granular data from the Dutch Data Warehouse.
    Fleuren LM; Tonutti M; de Bruin DP; Lalisang RCA; Dam TA; Gommers D; Cremer OL; Bosman RJ; Vonk SJJ; Fornasa M; Machado T; van der Meer NJM; Rigter S; Wils EJ; Frenzel T; Dongelmans DA; de Jong R; Peters M; Kamps MJA; Ramnarain D; Nowitzky R; Nooteboom FGCA; de Ruijter W; Urlings-Strop LC; Smit EGM; Mehagnoul-Schipper DJ; Dormans T; de Jager CPC; Hendriks SHA; Oostdijk E; Reidinga AC; Festen-Spanjer B; Brunnekreef G; Cornet AD; van den Tempel W; Boelens AD; Koetsier P; Lens J; Achterberg S; Faber HJ; Karakus A; Beukema M; Entjes R; de Jong P; Houwert T; Hovenkamp H; Noorduijn Londono R; Quintarelli D; Scholtemeijer MG; de Beer AA; Cinà G; Beudel M; de Keizer NF; Hoogendoorn M; Girbes ARJ; Herter WE; Elbers PWG; Thoral PJ;
    Intensive Care Med Exp; 2021 Jun; 9(1):32. PubMed ID: 34180025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting invasive mechanical ventilation in COVID 19 patients: A validation study.
    Statlender L; Shvartser L; Teppler S; Bendavid I; Kushinir S; Azullay R; Singer P
    PLoS One; 2024; 19(1):e0296386. PubMed ID: 38166095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Development and Validation of Simplified Machine Learning Algorithms to Predict Prognosis of Hospitalized Patients With COVID-19: Multicenter, Retrospective Study.
    He F; Page JH; Weinberg KR; Mishra A
    J Med Internet Res; 2022 Jan; 24(1):e31549. PubMed ID: 34951865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protocolised non-invasive compared with invasive weaning from mechanical ventilation for adults in intensive care: the Breathe RCT.
    Perkins GD; Mistry D; Lall R; Gao-Smith F; Snelson C; Hart N; Camporota L; Varley J; Carle C; Paramasivam E; Hoddell B; de Paeztron A; Dosanjh S; Sampson J; Blair L; Couper K; McAuley D; Young JD; Walsh T; Blackwood B; Rose L; Lamb SE; Dritsaki M; Maredza M; Khan I; Petrou S; Gates S
    Health Technol Assess; 2019 Sep; 23(48):1-114. PubMed ID: 31532358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishment of ICU Mortality Risk Prediction Models with Machine Learning Algorithm Using MIMIC-IV Database.
    Pang K; Li L; Ouyang W; Liu X; Tang Y
    Diagnostics (Basel); 2022 Apr; 12(5):. PubMed ID: 35626224
    [No Abstract]   [Full Text] [Related]  

  • 19. Predictive factors for noninvasive mechanical ventilation failure among COVID-19 critically ill patients - a retrospective cohort study.
    Kovačević M; Rizvanović N; Šabanović Adilović A
    Med Glas (Zenica); 2021 Aug; 18(2):362-369. PubMed ID: 34190506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning predicts the short-term requirement for invasive ventilation among Australian critically ill COVID-19 patients.
    Karri R; Chen YP; Burrell AJC; Penny-Dimri JC; Broadley T; Trapani T; Deane AM; Udy AA; Plummer MP;
    PLoS One; 2022; 17(10):e0276509. PubMed ID: 36288359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.