These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 35732733)

  • 1. De novo design of discrete, stable 3
    Kumar P; Paterson NG; Clayden J; Woolfson DN
    Nature; 2022 Jul; 607(7918):387-392. PubMed ID: 35732733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Helix packing motif common to the crystal structures of two undecapeptides containing dehydrophenylalanine residues: implications for the de novo design of helical bundle super secondary structural modules.
    Rudresh ; Gupta M; Ramakumar S; Chauhan VS
    Biopolymers; 2005; 80(5):617-27. PubMed ID: 16193455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallographic characterization of 12-helical secondary structure in β-peptides containing side chain groups.
    Choi SH; Guzei IA; Spencer LC; Gellman SH
    J Am Chem Soc; 2010 Oct; 132(39):13879-85. PubMed ID: 20828159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering a beta-helical D,L-peptide for folding in polar media.
    Kulp JL; Clark TD
    Chemistry; 2009 Nov; 15(44):11867-77. PubMed ID: 19784965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo design and structural characterization of an alpha-helical hairpin peptide: a model system for the study of protein folding intermediates.
    Fezoui Y; Weaver DL; Osterhout JJ
    Proc Natl Acad Sci U S A; 1994 Apr; 91(9):3675-9. PubMed ID: 8170968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein secondary structure mimetics: crystal conformations of α/γ4-hybrid peptide12-helices with proteinogenic side chains and their analogy with α- and β-peptide helices.
    Jadhav SV; Bandyopadhyay A; Gopi HN
    Org Biomol Chem; 2013 Jan; 11(3):509-14. PubMed ID: 23212647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of glycine zipper and unanticipated occurrence of ambidextrous helices in the crystal structure of a chiral undecapeptide.
    Acharya R; Gupta M; Ramakumar S; Ramagopal UA; Chauhan VS
    BMC Struct Biol; 2007 Aug; 7():51. PubMed ID: 17678528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular thermodynamic model to predict the alpha-helical secondary structure of polypeptide chains in solution.
    Zhu Y; Chen CC; King JA; Evans LB
    Biochemistry; 1992 Nov; 31(43):10591-601. PubMed ID: 1420174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between helix stability and binding affinities: molecular dynamics simulations of Bfl-1/A1-binding pro-apoptotic BH3 peptide helices in explicit solvent.
    Modi V; Lama D; Sankararamakrishnan R
    J Biomol Struct Dyn; 2013; 31(1):65-77. PubMed ID: 22803956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maintaining and breaking symmetry in homomeric coiled-coil assemblies.
    Rhys GG; Wood CW; Lang EJM; Mulholland AJ; Brady RL; Thomson AR; Woolfson DN
    Nat Commun; 2018 Oct; 9(1):4132. PubMed ID: 30297707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural cassette mutagenesis in a de novo designed protein: proof of a novel concept for examining protein folding and stability.
    Kwok SC; Tripet B; Man JH; Chana MS; Lavigne P; Mant CT; Hodges RS
    Biopolymers; 1998; 47(1):101-23. PubMed ID: 9692331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and characterization of an intramolecular antiparallel coiled coil peptide.
    Myszka DG; Chaiken IM
    Biochemistry; 1994 Mar; 33(9):2363-72. PubMed ID: 8117695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallographic characterization of helical secondary structures in alpha/beta-peptides with 1:1 residue alternation.
    Choi SH; Guzei IA; Spencer LC; Gellman SH
    J Am Chem Soc; 2008 May; 130(20):6544-50. PubMed ID: 18439014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of two-helix motifs in peptides: crystal structure of a system of linked helices of opposite chirality and a model helix-linker peptide.
    Karle IL; Banerjee A; Balaram P
    Fold Des; 1997; 2(4):203-10. PubMed ID: 9269561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence and conformational preferences at termini of α-helices in membrane proteins: role of the helix environment.
    Shelar A; Bansal M
    Proteins; 2014 Dec; 82(12):3420-36. PubMed ID: 25257385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One Peptide Reveals the Two Faces of α-Helix Unfolding-Folding Dynamics.
    Jesus CSH; Cruz PF; Arnaut LG; Brito RMM; Serpa C
    J Phys Chem B; 2018 Apr; 122(14):3790-3800. PubMed ID: 29558133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural resolution of switchable states of a de novo peptide assembly.
    Dawson WM; Lang EJM; Rhys GG; Shelley KL; Williams C; Brady RL; Crump MP; Mulholland AJ; Woolfson DN
    Nat Commun; 2021 Mar; 12(1):1530. PubMed ID: 33750792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo design and characterization of an apolar helical hairpin peptide at atomic resolution: Compaction mediated by weak interactions.
    Ramagopal UA; Ramakumar S; Sahal D; Chauhan VS
    Proc Natl Acad Sci U S A; 2001 Jan; 98(3):870-4. PubMed ID: 11158562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beta-peptide bundles with fluorous cores.
    Molski MA; Goodman JL; Craig CJ; Meng H; Kumar K; Schepartz A
    J Am Chem Soc; 2010 Mar; 132(11):3658-9. PubMed ID: 20196598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pi-turns in proteins and peptides: Classification, conformation, occurrence, hydration and sequence.
    Rajashankar KR; Ramakumar S
    Protein Sci; 1996 May; 5(5):932-46. PubMed ID: 8732765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.