BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

645 related articles for article (PubMed ID: 35732833)

  • 41. Role of micronucleus-activated cGAS-STING signaling in antitumor immunity.
    Shen Q; Xu P; Mei C
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2024 Jan; 53(1):25-34. PubMed ID: 38273467
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Emerging Roles of cGAS-STING Signaling in Mediating Ocular Inflammation.
    Zhou L; Ho BM; Chan HYE; Tong Y; Du L; He JN; Ng DS; Tham CC; Pang CP; Chu WK
    J Innate Immun; 2023; 15(1):739-750. PubMed ID: 37778330
    [TBL] [Abstract][Full Text] [Related]  

  • 43. cGAS exacerbates Schistosoma japonicum infection in a STING-type I IFN-dependent and independent manner.
    Liang L; Shen Y; Hu Y; Liu H; Cao J
    PLoS Pathog; 2022 Feb; 18(2):e1010233. PubMed ID: 35108342
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Flavonoids derived from licorice suppress LPS-induced acute lung injury in mice by inhibiting the cGAS-STING signaling pathway.
    Wen J; Qin S; Li Y; Zhang P; Zhan X; Fang M; Shi C; Mu W; Kan W; Zhao J; Hui S; Hou M; Li H; Xiao X; Xu G; Bai Z
    Food Chem Toxicol; 2023 May; 175():113732. PubMed ID: 36958387
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The mechanism of double-stranded DNA sensing through the cGAS-STING pathway.
    Shu C; Li X; Li P
    Cytokine Growth Factor Rev; 2014 Dec; 25(6):641-8. PubMed ID: 25007740
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Apoptosis-derived membrane vesicles drive the cGAS-STING pathway and enhance type I IFN production in systemic lupus erythematosus.
    Kato Y; Park J; Takamatsu H; Konaka H; Aoki W; Aburaya S; Ueda M; Nishide M; Koyama S; Hayama Y; Kinehara Y; Hirano T; Shima Y; Narazaki M; Kumanogoh A
    Ann Rheum Dis; 2018 Oct; 77(10):1507-1515. PubMed ID: 29945921
    [TBL] [Abstract][Full Text] [Related]  

  • 47. cGAS/STING Pathway Activation Contributes to Delayed Neurodegeneration in Neonatal Hypoxia-Ischemia Rat Model: Possible Involvement of LINE-1.
    Gamdzyk M; Doycheva DM; Araujo C; Ocak U; Luo Y; Tang J; Zhang JH
    Mol Neurobiol; 2020 Jun; 57(6):2600-2619. PubMed ID: 32253733
    [TBL] [Abstract][Full Text] [Related]  

  • 48. cGAS-STING effectively restricts murine norovirus infection but antagonizes the antiviral action of N-terminus of RIG-I in mouse macrophages.
    Yu P; Miao Z; Li Y; Bansal R; Peppelenbosch MP; Pan Q
    Gut Microbes; 2021; 13(1):1959839. PubMed ID: 34347572
    [TBL] [Abstract][Full Text] [Related]  

  • 49. cGAMP-activated cGAS-STING signaling: its bacterial origins and evolutionary adaptation by metazoans.
    Patel DJ; Yu Y; Xie W
    Nat Struct Mol Biol; 2023 Mar; 30(3):245-260. PubMed ID: 36894694
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Mitochondrial DNA and cGAS-STING Innate Immune Signaling Pathway: Latest Research Progress].
    Li YX; Cui SF; Meng W; Hu HY; Wang C
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2021 May; 52(3):387-395. PubMed ID: 34018355
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses.
    Holm CK; Rahbek SH; Gad HH; Bak RO; Jakobsen MR; Jiang Z; Hansen AL; Jensen SK; Sun C; Thomsen MK; Laustsen A; Nielsen CG; Severinsen K; Xiong Y; Burdette DL; Hornung V; Lebbink RJ; Duch M; Fitzgerald KA; Bahrami S; Mikkelsen JG; Hartmann R; Paludan SR
    Nat Commun; 2016 Feb; 7():10680. PubMed ID: 26893169
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and STING.
    Wu X; Wu FH; Wang X; Wang L; Siedow JN; Zhang W; Pei ZM
    Nucleic Acids Res; 2014 Jul; 42(13):8243-57. PubMed ID: 24981511
    [TBL] [Abstract][Full Text] [Related]  

  • 53. RNA viruses and the cGAS-STING pathway: reframing our understanding of innate immune sensing.
    Webb LG; Fernandez-Sesma A
    Curr Opin Virol; 2022 Apr; 53():101206. PubMed ID: 35180533
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation and inhibition of the DNA sensor cGAS.
    Hertzog J; Rehwinkel J
    EMBO Rep; 2020 Dec; 21(12):e51345. PubMed ID: 33155371
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of (-)-Epigallocateshin gallate derivatives promoting innate immune activation via 2',3'-cyclic GMP-AMP-stimulator of interferon genes pathway.
    Lee H; Jeong JH; Lee T; Chong Y; Choo H; Lee S
    Bioorg Med Chem Lett; 2023 Jun; 90():129325. PubMed ID: 37182610
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of Cytosolic DNA Sensor cGAS-STING as Immune-Related Risk Factor in Renal Carcinoma following Pan-Cancer Analysis.
    Wu Z; Lin Y; Liu LM; Hou YL; Qin WT; Zhang L; Jiang SH; Yang Q; Bai YR
    J Immunol Res; 2022; 2022():7978042. PubMed ID: 35983076
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Crosstalk between cGAS-STING signaling and cell death.
    Murthy AMV; Robinson N; Kumar S
    Cell Death Differ; 2020 Nov; 27(11):2989-3003. PubMed ID: 32948836
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of the cGAS-STING pathway in cancer development and oncotherapeutic approaches.
    Khoo LT; Chen LY
    EMBO Rep; 2018 Dec; 19(12):. PubMed ID: 30446584
    [TBL] [Abstract][Full Text] [Related]  

  • 59. DNA sensing in cancer: Pro-tumour and anti-tumour functions of cGAS-STING signalling.
    Wheeler OPG; Unterholzner L
    Essays Biochem; 2023 Sep; 67(6):905-918. PubMed ID: 37534795
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Small molecule inhibition of human cGAS reduces total cGAMP output and cytokine expression in cells.
    Wiser C; Kim B; Vincent J; Ascano M
    Sci Rep; 2020 May; 10(1):7604. PubMed ID: 32371942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.