BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35733018)

  • 1. Profiling Histone Methylation in Low Numbers of Cells.
    Brind'Amour J; Lorincz MC
    Methods Mol Biol; 2022; 2529():229-251. PubMed ID: 35733018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations.
    Brind'Amour J; Liu S; Hudson M; Chen C; Karimi MM; Lorincz MC
    Nat Commun; 2015 Jan; 6():6033. PubMed ID: 25607992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Histone Modifications in Acute Myeloid Leukaemia Using Chromatin Immunoprecipitation.
    Shields BJ; Keniry A; Blewitt ME; McCormack MP
    Methods Mol Biol; 2018; 1725():177-184. PubMed ID: 29322418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Native internally calibrated chromatin immunoprecipitation for quantitative studies of histone post-translational modifications.
    Grzybowski AT; Shah RN; Richter WF; Ruthenburg AJ
    Nat Protoc; 2019 Dec; 14(12):3275-3302. PubMed ID: 31723301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Comparison of Multiple Chromatin Immunoprecipitation-Sequencing (ChIP-seq) Experiments with spikChIP.
    Blanco E; Ballaré C; Di Croce L; Aranda S
    Methods Mol Biol; 2023; 2624():55-72. PubMed ID: 36723809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitatively profiling genome-wide patterns of histone modifications in Arabidopsis thaliana using ChIP-seq.
    Luo C; Lam E
    Methods Mol Biol; 2014; 1112():177-93. PubMed ID: 24478015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinformatics Methods for ChIP-seq Histone Analysis.
    Servant N
    Methods Mol Biol; 2022; 2529():267-293. PubMed ID: 35733020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protocol to apply spike-in ChIP-seq to capture massive histone acetylation in human cells.
    Wu D; Wang L; Huang H
    STAR Protoc; 2021 Sep; 2(3):100681. PubMed ID: 34337446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high-throughput ChIP-Seq for large-scale chromatin studies.
    Chabbert CD; Adjalley SH; Klaus B; Fritsch ES; Gupta I; Pelechano V; Steinmetz LM
    Mol Syst Biol; 2015 Jan; 11(1):777. PubMed ID: 25583149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Profiling histone modifications by chromatin immunoprecipitation coupled to deep sequencing in skeletal cells.
    Meyer MB; Benkusky NA; Pike JW
    Methods Mol Biol; 2015; 1226():61-70. PubMed ID: 25331043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin Immunoprecipitation and High-Throughput Sequencing (ChIP-Seq): Tips and Tricks Regarding the Laboratory Protocol and Initial Downstream Data Analysis.
    Patten DK; Corleone G; Magnani L
    Methods Mol Biol; 2018; 1767():271-288. PubMed ID: 29524141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin Immunoprecipitation: Application to the Study of Asthma.
    García-Sánchez A; Marqués-García F
    Methods Mol Biol; 2016; 1434():121-37. PubMed ID: 27300535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide histone modification profiling of inner cell mass and trophectoderm of bovine blastocysts by RAT-ChIP.
    Org T; Hensen K; Kreevan R; Mark E; Sarv O; Andreson R; Jaakma Ü; Salumets A; Kurg A
    PLoS One; 2019; 14(11):e0225801. PubMed ID: 31765427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin Preparation and Chromatin Immuno-precipitation from Drosophila Embryos.
    Löser E; Latreille D; Iovino N
    Methods Mol Biol; 2016; 1480():23-36. PubMed ID: 27659972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An optimised chromatin immunoprecipitation (ChIP) method for starchy leaves of Nicotiana benthamiana to study histone modifications of an allotetraploid plant.
    Ranawaka B; Tanurdzic M; Waterhouse P; Naim F
    Mol Biol Rep; 2020 Dec; 47(12):9499-9509. PubMed ID: 33237398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin integration labeling for mapping DNA-binding proteins and modifications with low input.
    Handa T; Harada A; Maehara K; Sato S; Nakao M; Goto N; Kurumizaka H; Ohkawa Y; Kimura H
    Nat Protoc; 2020 Oct; 15(10):3334-3360. PubMed ID: 32807906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathology tissue-chromatin immunoprecipitation, coupled with high-throughput sequencing, allows the epigenetic profiling of patient samples.
    Fanelli M; Amatori S; Barozzi I; Soncini M; Dal Zuffo R; Bucci G; Capra M; Quarto M; Dellino GI; Mercurio C; Alcalay M; Viale G; Pelicci PG; Minucci S
    Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21535-40. PubMed ID: 21106756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Software for rapid time dependent ChIP-sequencing analysis (TDCA).
    Myschyshyn M; Farren-Dai M; Chuang TJ; Vocadlo D
    BMC Bioinformatics; 2017 Nov; 18(1):521. PubMed ID: 29178831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MOWChIP-seq for low-input and multiplexed profiling of genome-wide histone modifications.
    Zhu B; Hsieh YP; Murphy TW; Zhang Q; Naler LB; Lu C
    Nat Protoc; 2019 Dec; 14(12):3366-3394. PubMed ID: 31666743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-Wide Profiling of Histone Modifications with ChIP-Seq.
    Ricci WA; Levin L; Zhang X
    Methods Mol Biol; 2020; 2072():101-117. PubMed ID: 31541441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.