BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 35733176)

  • 1. Cross-feeding between cyanobacterium Synechococcus and Escherichia coli in an artificial autotrophic-heterotrophic coculture system revealed by integrated omics analysis.
    Ma J; Guo T; Ren M; Chen L; Song X; Zhang W
    Biotechnol Biofuels Bioprod; 2022 Jun; 15(1):69. PubMed ID: 35733176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction and analysis of an artificial consortium based on the fast-growing cyanobacterium
    Zhang L; Chen L; Diao J; Song X; Shi M; Zhang W
    Biotechnol Biofuels; 2020; 13():82. PubMed ID: 32391082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomics and metabolomics of engineered Synechococcus elongatus during photomixotrophic growth.
    Tan LR; Cao YQ; Li JW; Xia PF; Wang SG
    Microb Cell Fact; 2022 Mar; 21(1):31. PubMed ID: 35248031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mimicking lichens: incorporation of yeast strains together with sucrose-secreting cyanobacteria improves survival, growth, ROS removal, and lipid production in a stable mutualistic co-culture production platform.
    Li T; Li CT; Butler K; Hays SG; Guarnieri MT; Oyler GA; Betenbaugh MJ
    Biotechnol Biofuels; 2017; 10():55. PubMed ID: 28344645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudomonas putida as saviour for troubled Synechococcus elongatus in a synthetic co-culture - interaction studies based on a multi-OMICs approach.
    Kratzl F; Urban M; Pandhal J; Shi M; Meng C; Kleigrewe K; Kremling A; Pflüger-Grau K
    Commun Biol; 2024 Apr; 7(1):452. PubMed ID: 38609451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Synechococcus elongatus 7942 for enhanced sucrose biosynthesis.
    Wang B; Zuniga C; Guarnieri MT; Zengler K; Betenbaugh M; Young JD
    Metab Eng; 2023 Nov; 80():12-24. PubMed ID: 37678664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate production.
    Weiss TL; Young EJ; Ducat DC
    Metab Eng; 2017 Nov; 44():236-245. PubMed ID: 29061492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced production of sucrose in the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973.
    Lin PC; Zhang F; Pakrasi HB
    Sci Rep; 2020 Jan; 10(1):390. PubMed ID: 31942010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the isoprene-producing co-culture system of Synechococcus elongates-Escherichia coli through omics analysis.
    Liu H; Cao Y; Guo J; Xu X; Long Q; Song L; Xian M
    Microb Cell Fact; 2021 Jan; 20(1):6. PubMed ID: 33413404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of Stable, Light-Driven Co-cultures of Cyanobacteria with Heterotrophic Microbes.
    Singh AK; Ducat DC
    Methods Mol Biol; 2022; 2379():277-291. PubMed ID: 35188668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic and metabolomic analyses reveal metabolic responses to 3-hydroxypropionic acid synthesized internally in cyanobacterium
    Wang Y; Chen L; Zhang W
    Biotechnol Biofuels; 2016; 9():209. PubMed ID: 27757169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction.
    Hays SG; Yan LLW; Silver PA; Ducat DC
    J Biol Eng; 2017; 11():4. PubMed ID: 28127397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of an artificial consortium of
    Cui Y; Rasul F; Jiang Y; Zhong Y; Zhang S; Boruta T; Riaz S; Daroch M
    Front Microbiol; 2022; 13():965968. PubMed ID: 36338098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Designed A. vinelandii-S. elongatus Coculture for Chemical Photoproduction from Air, Water, Phosphate, and Trace Metals.
    Smith MJ; Francis MB
    ACS Synth Biol; 2016 Sep; 5(9):955-61. PubMed ID: 27232890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metagenomic and Metaproteomic Insights into Photoautotrophic and Heterotrophic Interactions in a
    Zheng Q; Wang Y; Lu J; Lin W; Chen F; Jiao N
    mBio; 2020 Feb; 11(1):. PubMed ID: 32071270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering Photosynthetic Microbial Consortia for Carbon-Negative Biosynthesis.
    Wang B; Dai Z
    Angew Chem Int Ed Engl; 2023 Apr; 62(17):e202217961. PubMed ID: 36764925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering a Xylose-Utilizing
    Yao J; Wang J; Ju Y; Dong Z; Song X; Chen L; Zhang W
    ACS Synth Biol; 2022 Feb; 11(2):678-688. PubMed ID: 35119824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metagenomic analysis reveals potential interactions in an artificial coculture.
    Ren M; Zhang G; Ye Z; Qiao Z; Xie M; Lin Y; Li T; Zhao J
    AMB Express; 2017 Nov; 7(1):193. PubMed ID: 29098480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of cyanobacteria for photosynthetic 3-hydroxypropionic acid production from CO2 using Synechococcus elongatus PCC 7942.
    Lan EI; Chuang DS; Shen CR; Lee AM; Ro SY; Liao JC
    Metab Eng; 2015 Sep; 31():163-70. PubMed ID: 26278506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CyanOmics: an integrated database of omics for the model cyanobacterium Synechococcus sp. PCC 7002.
    Yang Y; Feng J; Li T; Ge F; Zhao J
    Database (Oxford); 2015; 2015():. PubMed ID: 25632108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.