These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 35733242)
1. Quantifying tissue optical properties of human heads in vivo using continuous-wave near-infrared spectroscopy and subject-specific three-dimensional Monte Carlo models. Kao TC; Sung KB J Biomed Opt; 2022 Jun; 27(8):. PubMed ID: 35733242 [TBL] [Abstract][Full Text] [Related]
2. Scalp and skull influence on near infrared photon propagation in the Colin27 brain template. Strangman GE; Zhang Q; Li Z Neuroimage; 2014 Jan; 85 Pt 1():136-49. PubMed ID: 23660029 [TBL] [Abstract][Full Text] [Related]
3. Influence of extracerebral layers on estimates of optical properties with continuous wave near infrared spectroscopy: analysis based on multi-layered brain tissue architecture and Monte Carlo simulation. Zhang Y; Liu X; Wang Q; Liu D; Yang C; Sun J Comput Assist Surg (Abingdon); 2019 Oct; 24(sup1):144-150. PubMed ID: 30676092 [TBL] [Abstract][Full Text] [Related]
4. Effects of Different Optical Properties of Head Tissues on Near-Infrared Spectroscopy Using Monte Carlo Simulations. Russomanno E; Kalyanov A; Jiang J; Ackermann M; Wolf M Adv Exp Med Biol; 2022; 1395():39-43. PubMed ID: 36527611 [TBL] [Abstract][Full Text] [Related]
5. Investigation of the source-detector separation in near infrared spectroscopy for healthy and clinical applications. Wang L; Ayaz H; Izzetoglu M J Biophotonics; 2019 Nov; 12(11):e201900175. PubMed ID: 31291506 [TBL] [Abstract][Full Text] [Related]
6. Retrieval of chromophore concentration changes in a digital human head model using analytical mean partial pathlengths of photons. Vera DA; García HA; Carbone NA; Waks-Serra MV; Iriarte DI; Pomarico JA J Biomed Opt; 2024 Feb; 29(2):025004. PubMed ID: 38419755 [TBL] [Abstract][Full Text] [Related]
7. Application of Monte Carlo simulation-based photon migration for enhanced understanding of near-infrared (NIR) diffuse reflectance. Part I: Depth of penetration in pharmaceutical materials. Shi Z; Anderson CA J Pharm Sci; 2010 May; 99(5):2399-412. PubMed ID: 19967783 [TBL] [Abstract][Full Text] [Related]
8. Depth sensitivity analysis of functional near-infrared spectroscopy measurement using three-dimensional Monte Carlo modelling-based magnetic resonance imaging. Mansouri C; L'huillier JP; Kashou NH; Humeau A Lasers Med Sci; 2010 May; 25(3):431-8. PubMed ID: 20143117 [TBL] [Abstract][Full Text] [Related]
9. Physics-driven learning of x-ray skin dose distribution in interventional procedures. Roser P; Zhong X; Birkhold A; Strobel N; Kowarschik M; Fahrig R; Maier A Med Phys; 2019 Oct; 46(10):4654-4665. PubMed ID: 31407346 [TBL] [Abstract][Full Text] [Related]
10. Diffuse photon density wave measurements and Monte Carlo simulations. Kuzmin VL; Neidrauer MT; Diaz D; Zubkov LA J Biomed Opt; 2015 Oct; 20(10):105006. PubMed ID: 26465614 [TBL] [Abstract][Full Text] [Related]
11. Optical dosimetry probes to validate Monte Carlo and empirical-method-based NIR dose planning in the brain. Verleker AP; Shaffer M; Fang Q; Choi MR; Clare S; Stantz KM Appl Opt; 2016 Dec; 55(34):9875-9888. PubMed ID: 27958483 [TBL] [Abstract][Full Text] [Related]
12. Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models. Fukui Y; Ajichi Y; Okada E Appl Opt; 2003 Jun; 42(16):2881-7. PubMed ID: 12790436 [TBL] [Abstract][Full Text] [Related]
13. scatterBrains: an open database of human head models and companion optode locations for realistic Monte Carlo photon simulations. Wu MM; Horstmeyer R; Carp SA J Biomed Opt; 2023 Oct; 28(10):100501. PubMed ID: 37811478 [TBL] [Abstract][Full Text] [Related]
14. Analysis of relative error in perturbation Monte Carlo simulations of radiative transport. Parsanasab M; Hayakawa C; Spanier J; Shen Y; Venugopalan V J Biomed Opt; 2023 Jun; 28(6):065001. PubMed ID: 37293394 [TBL] [Abstract][Full Text] [Related]
15. Analysis of estimation of optical properties of sub superficial structures in multi layered tissue model using distribution function method. Żołek N; Rix H; Botwicz M Comput Methods Programs Biomed; 2020 Jan; 183():105084. PubMed ID: 31580969 [TBL] [Abstract][Full Text] [Related]
16. Framework for denoising Monte Carlo photon transport simulations using deep learning. Ardakani MR; Yu L; Kaeli D; Fang Q J Biomed Opt; 2022 May; 27(8):. PubMed ID: 35614533 [TBL] [Abstract][Full Text] [Related]
17. Artificial neural networks trained on simulated multispectral data for real-time imaging of skin microcirculatory blood oxygen saturation. Larsson M; Ewerlöf M; Salerud EG; Strömberg T; Fredriksson I J Biomed Opt; 2024 Jun; 29(Suppl 3):S33304. PubMed ID: 38989257 [TBL] [Abstract][Full Text] [Related]
18. Monte Carlo simulation of NIR diffuse reflectance in the normal and diseased human breast tissues. Prince S; Malarvizhi S Biofactors; 2007; 30(4):255-63. PubMed ID: 18607075 [TBL] [Abstract][Full Text] [Related]
19. Optical characterization of two-layered turbid media for non-invasive, absolute oximetry in cerebral and extracerebral tissue. Hallacoglu B; Sassaroli A; Fantini S PLoS One; 2013; 8(5):e64095. PubMed ID: 23724023 [TBL] [Abstract][Full Text] [Related]
20. Effects of uncertainty in head tissue conductivity and complexity on EEG forward modeling in neonates. Azizollahi H; Aarabi A; Wallois F Hum Brain Mapp; 2016 Oct; 37(10):3604-22. PubMed ID: 27238749 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]