These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 35733242)
21. Quantifying changes in oxygen saturation of the internal jugular vein in vivo using deep neural networks and subject-specific three-dimensional Monte Carlo models. Sun CH; Lee HW; Tsai YH; Luo JR; Sung KB Opt Lett; 2024 May; 49(10):2669-2672. PubMed ID: 38748132 [TBL] [Abstract][Full Text] [Related]
22. Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head. Selb J; Ogden TM; Dubb J; Fang Q; Boas DA J Biomed Opt; 2014 Jan; 19(1):16010. PubMed ID: 24407503 [TBL] [Abstract][Full Text] [Related]
23. Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer. Okada E; Delpy DT Appl Opt; 2003 Jun; 42(16):2906-14. PubMed ID: 12790439 [TBL] [Abstract][Full Text] [Related]
24. Graphics processing units-accelerated adaptive nonlocal means filter for denoising three-dimensional Monte Carlo photon transport simulations. Yuan Y; Yu L; Doğan Z; Fang Q J Biomed Opt; 2018 Nov; 23(12):1-9. PubMed ID: 30499265 [TBL] [Abstract][Full Text] [Related]
25. In vivo time-resolved reflectance spectroscopy of the human forehead. Comelli D; Bassi A; Pifferi A; Taroni P; Torricelli A; Cubeddu R; Martelli F; Zaccanti G Appl Opt; 2007 Apr; 46(10):1717-25. PubMed ID: 17356614 [TBL] [Abstract][Full Text] [Related]
26. Graphics-processing-unit-accelerated Monte Carlo simulation of polarized light in complex three-dimensional media. Yan S; Jacques SL; Ramella-Roman JC; Fang Q J Biomed Opt; 2022 May; 27(8):. PubMed ID: 35534924 [TBL] [Abstract][Full Text] [Related]
27. Characterization of optical transport effects on EPID dosimetry using Geant4. Blake SJ; Vial P; Holloway L; Greer PB; McNamara AL; Kuncic Z Med Phys; 2013 Apr; 40(4):041708. PubMed ID: 23556878 [TBL] [Abstract][Full Text] [Related]
28. A Monte Carlo study of near infrared light propagation in the human head with lesions-a time-resolved approach. Vera DA; García HA; Victoria Waks Serra M; Baez GR; Iriarte DI; Pomarico JA Biomed Phys Eng Express; 2022 Mar; 8(3):. PubMed ID: 35235912 [TBL] [Abstract][Full Text] [Related]
29. Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach. Choi J; Wolf M; Toronov V; Wolf U; Polzonetti C; Hueber D; Safonova LP; Gupta R; Michalos A; Mantulin W; Gratton E J Biomed Opt; 2004; 9(1):221-9. PubMed ID: 14715077 [TBL] [Abstract][Full Text] [Related]
30. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum. Liu Q; Zhu C; Ramanujam N J Biomed Opt; 2003 Apr; 8(2):223-36. PubMed ID: 12683848 [TBL] [Abstract][Full Text] [Related]
31. Red and NIR light dosimetry in the human deep brain. Pitzschke A; Lovisa B; Seydoux O; Zellweger M; Pfleiderer M; Tardy Y; Wagnières G Phys Med Biol; 2015 Apr; 60(7):2921-37. PubMed ID: 25789711 [TBL] [Abstract][Full Text] [Related]
32. Analysis of single Monte Carlo methods for prediction of reflectance from turbid media. Martinelli M; Gardner A; Cuccia D; Hayakawa C; Spanier J; Venugopalan V Opt Express; 2011 Sep; 19(20):19627-42. PubMed ID: 21996904 [TBL] [Abstract][Full Text] [Related]
33. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues. Nagarajan VK; Yu B Lasers Surg Med; 2016 Sep; 48(7):686-94. PubMed ID: 27250022 [TBL] [Abstract][Full Text] [Related]
34. Determination of optical probe interrogation field of near-infrared reflectance: phantom and Monte Carlo study. Bahadur AN; Giller CA; Kashyap D; Liu H Appl Opt; 2007 Aug; 46(23):5552-61. PubMed ID: 17694099 [TBL] [Abstract][Full Text] [Related]
35. Time-resolved subtraction method for measuring optical properties of turbid media. Milej D; Abdalmalak A; Janusek D; Diop M; Liebert A; St Lawrence K Appl Opt; 2016 Mar; 55(7):1507-13. PubMed ID: 26974605 [TBL] [Abstract][Full Text] [Related]
36. Diffuse reflectance spectroscopy, a potential optical sensing technology for the detection of cortical breaches during spinal screw placement. Swamy A; Burström G; Spliethoff JW; Babic D; Reich C; Groen J; Edström E; Elmi Terander A; Racadio JM; Dankelman J; Hendriks BHW J Biomed Opt; 2019 Jan; 24(1):1-11. PubMed ID: 30701722 [TBL] [Abstract][Full Text] [Related]
37. Application of Monte Carlo simulation-based photon migration for enhanced understanding of near-infrared (NIR) diffuse reflectance. Part II: Photon radial diffusion in NIR chemical images. Shi Z; Anderson CA J Pharm Sci; 2010 Oct; 99(10):4174-82. PubMed ID: 20737626 [TBL] [Abstract][Full Text] [Related]
38. Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth. Kanick SC; Robinson DJ; Sterenborg HJ; Amelink A Phys Med Biol; 2009 Nov; 54(22):6991-7008. PubMed ID: 19887712 [TBL] [Abstract][Full Text] [Related]
39. Model-based characterization platform of fiber optic extended-wavelength diffuse reflectance spectroscopy for identification of neurovascular bundles. Sun Y; Dumont AP; Arefin MS; Patil CA J Biomed Opt; 2022 Sep; 27(9):. PubMed ID: 36088529 [TBL] [Abstract][Full Text] [Related]