BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35733623)

  • 1. Hydrophone Spatial Averaging Artifacts for ARFI Beams from Array Transducers.
    Wear K; Shah A; Ivory AM; Baker C
    IEEE Int Ultrason Symp; 2020; NA():1-4. PubMed ID: 35733623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophone Spatial Averaging Correction for Acoustic Exposure Measurements From Arrays-Part II: Validation for ARFI and Pulsed Doppler Waveforms.
    Wear KA; Shah A; Ivory AM; Baker C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Mar; 68(3):376-388. PubMed ID: 33186103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophone Spatial Averaging Correction for Acoustic Exposure Measurements From Arrays-Part I: Theory and Impact on Diagnostic Safety Indexes.
    Wear KA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Mar; 68(3):358-375. PubMed ID: 33186102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correction for Spatial Averaging Artifacts for Circularly-Symmetric Pressure Beams Measured with Membrane Hydrophones.
    Wear K; Shah A; Baker C
    IEEE Int Ultrason Symp; 2020; NA():1-4. PubMed ID: 35765664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction for Hydrophone Spatial Averaging Artifacts for Circular Sources.
    Wear KA; Shah A; Baker C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2674-2691. PubMed ID: 32746206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correction for Spatial Averaging Artifacts in Hydrophone Measurements of High-Intensity Therapeutic Ultrasound: An Inverse Filter Approach.
    Wear KA; Howard SM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Sep; 66(9):1453-1464. PubMed ID: 31247548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal Deconvolution of Hydrophone Response for Linear and Nonlinear Beams-Part I: Theory, Spatial-Averaging Correction Formulas, and Criteria for Sensitive Element Size.
    Wear KA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1243-1256. PubMed ID: 35133964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved measurement of acoustic output using complex deconvolution of hydrophone sensitivity.
    Wear KA; Gammell PM; Maruvada S; Liu Y; Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jan; 61(1):62-75. PubMed ID: 24402896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing acoustic fields of clinically relevant transducers: the effect of hydrophone probes' finite apertures and bandwidths.
    Radulescu EG; Lewin PA; Wójcik J; Nowicki A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Oct; 51(10):1262-70. PubMed ID: 15553510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation of High-Intensity Therapeutic Ultrasound (HITU) Pressure Field Characterization: Effects of Hydrophone Choice, Nonlinearity, Spatial Averaging and Complex Deconvolution.
    Liu Y; Wear KA; Harris GR
    Ultrasound Med Biol; 2017 Oct; 43(10):2329-2342. PubMed ID: 28735734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of finite aperture and frequency response of ultrasonic hydrophone probes on the determination of acoustic output.
    Radulescu EG; Lewin PA; Wójcik J; Nowicki A; Berger WA
    Ultrasonics; 2004 Apr; 42(1-9):367-72. PubMed ID: 15047313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal Deconvolution of Hydrophone Response for Linear and Nonlinear Beams-Part II: Experimental Validation.
    Wear KA; Shah A; Baker C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1257-1267. PubMed ID: 35143394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Considerations for Choosing Sensitive Element Size for Needle and Fiber-Optic Hydrophones-Part II: Experimental Validation of Spatial Averaging Model.
    Wear KA; Liu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Feb; 66(2):340-347. PubMed ID: 30530327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Practicalities of Obtaining and Using Hydrophone Calibration Data to Derive Pressure Waveforms.
    Hurrell AM; Rajagopal S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jan; 64(1):126-140. PubMed ID: 27479961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Considerations for Choosing Sensitive Element Size for Needle and Fiber-Optic Hydrophones-Part I: Spatiotemporal Transfer Function and Graphical Guide.
    Wear KA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Feb; 66(2):318-339. PubMed ID: 30530326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nominal Versus Actual Spatial Resolution: Comparison of Directivity and Frequency-Dependent Effective Sensitive Element Size for Membrane, Needle, Capsule, and Fiber-Optic Hydrophones.
    Wear KA; Shah A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Feb; 70(2):112-119. PubMed ID: 36178990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correction for frequency-dependent hydrophone response to nonlinear pressure waves using complex deconvolution and rarefactional filtering: application with fiber optic hydrophones.
    Wear K; Liu Y; Gammell PM; Maruvada S; Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jan; 62(1):152-64. PubMed ID: 25585399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust spot-poled membrane hydrophones for measurement of large amplitude pressure waveforms generated by high intensity therapeutic ultrasonic transducers.
    Wilkens V; Sonntag S; Georg O
    J Acoust Soc Am; 2016 Mar; 139(3):1319-32. PubMed ID: 27036269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane hydrophone measurement and numerical simulation of HIFU fields up to developed shock regimes.
    Bessonova OV; Wilkens V
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Feb; 60(2):290-300. PubMed ID: 23357903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directivity and Frequency-Dependent Effective Sensitive Element Size of Membrane Hydrophones: Theory Versus Experiment.
    Wear KA; Baker C; Miloro P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Nov; 66(11):1723-1730. PubMed ID: 31352340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.