These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35733891)

  • 1. Towards the rational design of Pt-based alloy catalysts for the low-temperature water-gas shift reaction: from extended surfaces to single atom alloys.
    Yang Y; Shen T; Xu X
    Chem Sci; 2022 Jun; 13(21):6385-6396. PubMed ID: 35733891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts.
    Giannakakis G; Flytzani-Stephanopoulos M; Sykes ECH
    Acc Chem Res; 2019 Jan; 52(1):237-247. PubMed ID: 30540456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One Decade of Computational Studies on Single-Atom Alloys: Is
    Réocreux R; Stamatakis M
    Acc Chem Res; 2022 Jan; 55(1):87-97. PubMed ID: 34904820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Cu/Pt near-surface alloy for water-gas shift catalysis.
    Knudsen J; Nilekar AU; Vang RT; Schnadt J; Kunkes EL; Dumesic JA; Mavrikakis M; Besenbacher F
    J Am Chem Soc; 2007 May; 129(20):6485-90. PubMed ID: 17469820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethane Dehydrogenation over the Core-Shell Pt-Based Alloy Catalysts: Driven by Engineering the Shell Composition and Thickness.
    Zhang Y; Wang B; Fan M; Ling L; Zhang R
    ACS Appl Mater Interfaces; 2023 Mar; 15(8):10679-10695. PubMed ID: 36795766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction Mechanisms, Kinetics, and Improved Catalysts for Ammonia Synthesis from Hierarchical High Throughput Catalyst Design.
    Fuller J; An Q; Fortunelli A; Goddard WA
    Acc Chem Res; 2022 Apr; 55(8):1124-1134. PubMed ID: 35387450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening by kinetic Monte Carlo simulation of Pt-Au(100) surfaces for the steady-state decomposition of nitric oxide in excess dioxygen.
    Kieken LD; Neurock M; Mei D
    J Phys Chem B; 2005 Feb; 109(6):2234-44. PubMed ID: 16851216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic structures of Pt-Co and Pt-Ru alloys for CO-tolerant anode catalysts in polymer electrolyte fuel cells studied by EC-XPS.
    Wakisaka M; Mitsui S; Hirose Y; Kawashima K; Uchida H; Watanabe M
    J Phys Chem B; 2006 Nov; 110(46):23489-96. PubMed ID: 17107203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface design of alloy protection against CO-poisoning from first principles.
    Yuge K; Koyama Y; Kuwabara A; Tanaka I
    J Phys Condens Matter; 2014 Sep; 26(35):355006. PubMed ID: 25078032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a ReaxFF Reactive Force Field for the Pt-Ni Alloy Catalyst.
    Shin YK; Gai L; Raman S; van Duin ACT
    J Phys Chem A; 2016 Oct; 120(41):8044-8055. PubMed ID: 27670674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas chromatographic kinetic study of carbon monoxide oxidation over platinum-rhodium alloy catalysts.
    Gavril D; Katsanos NA; Karaiskakis G
    J Chromatogr A; 1999 Aug; 852(2):507-23. PubMed ID: 10481988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyzing the Active Site and Predicting the Overall Activity of Alloy Catalysts.
    Zhou Q; Shou H; Qiao S; Cao Y; Zhang P; Wei S; Chen S; Wu X; Song L
    J Am Chem Soc; 2024 Jun; 146(22):15167-15175. PubMed ID: 38717376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidating the composition of PtAg surface alloys with atomic-scale imaging and spectroscopy.
    Patel DA; Kress PL; Cramer LA; Larson AM; Sykes ECH
    J Chem Phys; 2019 Oct; 151(16):164705. PubMed ID: 31675860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Principles and Methods for the Rational Design of Core-Shell Nanoparticle Catalysts with Ultralow Noble Metal Loadings.
    Hunt ST; Román-Leshkov Y
    Acc Chem Res; 2018 May; 51(5):1054-1062. PubMed ID: 29510023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering the Local Environment of Single-Atom Catalysts with X-ray Absorption Spectroscopy.
    Li Y; Frenkel AI
    Acc Chem Res; 2021 Jun; 54(11):2660-2669. PubMed ID: 33990137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis-atomic structure-properties relationships in metallic nanoparticles by total scattering experiments and 3D computer simulations: case of Pt-Ru nanoalloy catalysts.
    Prasai B; Ren Y; Shan S; Zhao Y; Cronk H; Luo J; Zhong CJ; Petkov V
    Nanoscale; 2015 May; 7(17):8122-34. PubMed ID: 25874741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New insights into O and OH adsorption on the Pt-Co alloy surface: effects of Pt/Co ratios and structures.
    Zhao P; Qin X; Li H; Qu K; Li R
    Phys Chem Chem Phys; 2020 Sep; 22(37):21124-21130. PubMed ID: 32955059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.