BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35733968)

  • 1. Transcriptomic Responses of
    Ranjitkar S; Duan JE; Srirattana K; Alqahtani F; Tulman ER; Mandoiu I; Venkitanarayanan K; Tian X
    Front Microbiol; 2022; 13():888433. PubMed ID: 35733968
    [No Abstract]   [Full Text] [Related]  

  • 2. Cytotoxic effects on cancerous and non-cancerous cells of trans-cinnamaldehyde, carvacrol, and eugenol.
    Ranjitkar S; Zhang D; Sun F; Salman S; He W; Venkitanarayanan K; Tulman ER; Tian X
    Sci Rep; 2021 Aug; 11(1):16281. PubMed ID: 34381064
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Karumathil DP; Nair MS; Gaffney J; Kollanoor-Johny A; Venkitanarayanan K
    Front Microbiol; 2018; 9():1011. PubMed ID: 29875743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characteristics and antibiotic susceptibility profiles of Mycoplasma bovis associated with mastitis on dairy farms in China.
    Liu Y; Xu S; Li M; Zhou M; Huo W; Gao J; Liu G; Kastelic JP; Han B
    Prev Vet Med; 2020 Sep; 182():105106. PubMed ID: 32810702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mycoplasma bovis as an agent of mastitis, pneumonia, arthritis and genital disorders in cattle.
    Pfützner H; Sachse K
    Rev Sci Tech; 1996 Dec; 15(4):1477-94. PubMed ID: 9190022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress Resistance Development and Genome-Wide Transcriptional Response of Escherichia coli O157:H7 Adapted to Sublethal Thymol, Carvacrol, and
    Yuan W; Seng ZJ; Kohli GS; Yang L; Yuk HG
    Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30217837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling Aspergillus flavus and Aspergillus parasiticus growth and aflatoxin production in poultry feed using carvacrol and trans-cinnamaldehyde.
    Yin HB; Chen CH; Kollanoor-Johny A; Darre MJ; Venkitanarayanan K
    Poult Sci; 2015 Sep; 94(9):2183-90. PubMed ID: 26217023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics.
    Gill AO; Holley RA
    Int J Food Microbiol; 2006 Apr; 108(1):1-9. PubMed ID: 16417936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunosuppression in Cows following Intramammary Infusion of Mycoplasma bovis.
    Gondaira S; Nishi K; Tanaka T; Yamamoto T; Nebu T; Watanabe R; Konnai S; Hayashi T; Kiku Y; Okamoto M; Matsuda K; Koiwa M; Iwano H; Nagahata H; Higuchi H
    Infect Immun; 2020 Feb; 88(3):. PubMed ID: 31843962
    [No Abstract]   [Full Text] [Related]  

  • 10. Bovine Epithelial
    Josi C; Bürki S; Stojiljkovic A; Wellnitz O; Stoffel MH; Pilo P
    Front Cell Infect Microbiol; 2018; 8():329. PubMed ID: 30280094
    [No Abstract]   [Full Text] [Related]  

  • 11. Antibacterial effect of plant-derived antimicrobials on major bacterial mastitis pathogens in vitro.
    Ananda Baskaran S; Kazmer GW; Hinckley L; Andrew SM; Venkitanarayanan K
    J Dairy Sci; 2009 Apr; 92(4):1423-9. PubMed ID: 19307623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibiofilm effect of plant derived antimicrobials on Listeria monocytogenes.
    Upadhyay A; Upadhyaya I; Kollanoor-Johny A; Venkitanarayanan K
    Food Microbiol; 2013 Oct; 36(1):79-89. PubMed ID: 23764223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of fumigation with Trans-cinnamaldehyde and eugenol in reducing Salmonella enterica serovar Enteritidis on embryonated egg shells.
    Upadhyaya I; Yin HB; Nair MS; Chen CH; Upadhyay A; Darre MJ; Venkitanarayanan K
    Poult Sci; 2015 Jul; 94(7):1685-90. PubMed ID: 26009758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficacy of plant-derived antimicrobials for controlling Salmonella Schwarzengrund on dry pet food.
    Chen CH; Yin HB; Upadhayay A; Brown S; Venkitanarayanan K
    Int J Food Microbiol; 2019 May; 296():1-7. PubMed ID: 30818250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Herd-specific strains of Mycoplasma bovis in outbreaks of mycoplasmal mastitis and pneumonia.
    Aebi M; Bodmer M; Frey J; Pilo P
    Vet Microbiol; 2012 Jun; 157(3-4):363-8. PubMed ID: 22306036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and comparison of loop-mediated isothermal amplification and quantitative polymerase chain reaction assays for the detection of Mycoplasma bovis in milk.
    Appelt S; Aly SS; Tonooka K; Glenn K; Xue Z; Lehenbauer TW; Marco ML
    J Dairy Sci; 2019 Mar; 102(3):1985-1996. PubMed ID: 30612794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antibiotic susceptibility profiles of Mycoplasma bovis strains isolated from cattle in Hungary, Central Europe.
    Sulyok KM; Kreizinger Z; Fekete L; Hrivnák V; Magyar T; Jánosi S; Schweitzer N; Turcsányi I; Makrai L; Erdélyi K; Gyuranecz M
    BMC Vet Res; 2014 Oct; 10():256. PubMed ID: 25344297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semen as a source of Mycoplasma bovis mastitis in dairy herds.
    Haapala V; Pohjanvirta T; Vähänikkilä N; Halkilahti J; Simonen H; Pelkonen S; Soveri T; Simojoki H; Autio T
    Vet Microbiol; 2018 Mar; 216():60-66. PubMed ID: 29519526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibacterial activity and mechanism of essential oils in combination with medium-chain fatty acids against predominant bovine mastitis pathogens.
    Rani S; Verma S; Singh H; Ram C
    Lett Appl Microbiol; 2022 Jun; 74(6):959-969. PubMed ID: 35178733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole dairy herd sampling to detect subclinical intramammary Mycoplasma bovis infection after clinical mastitis outbreaks.
    Hazelton MS; Morton JM; Parker AM; Sheehy PA; Bosward KL; Malmo J; House JK
    Vet Microbiol; 2020 May; 244():108662. PubMed ID: 32402350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.