BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35734934)

  • 41. Fate of sulfur mustard on soil: Evaporation, degradation, and vapor emission.
    Jung H; Kah D; Chan Lim K; Lee JY
    Environ Pollut; 2017 Jan; 220(Pt A):478-486. PubMed ID: 27697375
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Realizing Catalytic Acetophenone Hydrodeoxygenation with Palladium-Equipped Porous Organic Polymers.
    Paul R; Shit SC; Fovanna T; Ferri D; Srinivasa Rao B; Gunasooriya GTKK; Dao DQ; Le QV; Shown I; Sherburne MP; Trinh QT; Mondal J
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50550-50565. PubMed ID: 33111522
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Toxicology and pharmacology of the chemical warfare agent sulfur mustard.
    Dacre JC; Goldman M
    Pharmacol Rev; 1996 Jun; 48(2):289-326. PubMed ID: 8804107
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cutaneous challenge with chemical warfare agents in the SKH-1 hairless mouse (II): effects of some currently used skin decontaminants (RSDL and Fuller's earth) against liquid sulphur mustard and VX exposure.
    Taysse L; Dorandeu F; Daulon S; Foquin A; Perrier N; Lallement G; Breton P
    Hum Exp Toxicol; 2011 Jun; 30(6):491-8. PubMed ID: 20534641
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Porous Organic Polymers Derived from Ferrocene and Tetrahedral Silicon-Centered Monomers for Carbon Dioxide Sorption.
    Zhao X; Qi Y; Li J; Ma Q
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160360
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Imidazolium- and Triazine-Based Porous Organic Polymers for Heterogeneous Catalytic Conversion of CO
    Zhong H; Su Y; Chen X; Li X; Wang R
    ChemSusChem; 2017 Dec; 10(24):4855-4863. PubMed ID: 29052370
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Materials for the Simultaneous Entrapment and Catalytic Aerobic Oxidative Removal of Sulfur Mustard Simulants.
    Snider VG; Alshehri R; Slaugenhaupt RM; Hill CL
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51519-51524. PubMed ID: 34665594
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ocular injuries caused by mustard gas: diagnosis, treatment, and medical defense.
    Safarinejad MR; Moosavi SA; Montazeri B
    Mil Med; 2001 Jan; 166(1):67-70. PubMed ID: 11197102
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Oxidative degradation of chemical warfare agents in water by bleaching powder.
    Qi L; Zuo G; Cheng Z; Zhu H; Li S
    Water Sci Technol; 2012; 66(7):1377-83. PubMed ID: 22864420
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mustard gas: imminent danger or eminent threat?
    Geraci MJ
    Ann Pharmacother; 2008 Feb; 42(2):237-46. PubMed ID: 18212254
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Changes in the oxidative stress/anti-oxidant system after exposure to sulfur mustard and antioxidant strategies in the therapy, a review.
    Pohanka M; Martinkova P; Brtnicky M; Kynicky J
    Toxicol Mech Methods; 2017 Jul; 27(6):408-416. PubMed ID: 28413899
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Decontamination of chemical-warfare agent simulants by polymer surfaces doped with the singlet oxygen generator zinc octaphenoxyphthalocyanine.
    Gephart RT; Coneski PN; Wynne JH
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10191-200. PubMed ID: 24060426
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Combining Two into One: A Dual-Function H
    Zhou Y; Gao Q; Zhang L; Zhou Y; Zhong Y; Yu J; Liu J; Huang C; Wang Y
    Inorg Chem; 2020 Aug; 59(16):11595-11605. PubMed ID: 32799468
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of chemical agent transport in paints.
    Willis MP; Gordon W; Lalain T; Mantooth B
    J Hazard Mater; 2013 Sep; 260():907-13. PubMed ID: 23872337
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Supercritical fluid extraction of chemical warfare agent simulants from soil.
    Griest WH; Ramsey RS; Ho CH; Caldwell WM
    J Chromatogr; 1992 May; 600(2):273-7. PubMed ID: 1400849
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Oxidative Neutralization of Mustard-Gas Simulants in an On-Board Flow Device with In-Line NMR Monitoring.
    Picard B; Gouilleux B; Lebleu T; Maddaluno J; Chataigner I; Penhoat M; Felpin FX; Giraudeau P; Legros J
    Angew Chem Int Ed Engl; 2017 Jun; 56(26):7568-7572. PubMed ID: 28474395
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Behavior of sulfur mustard in sand, concrete, and asphalt matrices: Evaporation, degradation, and decontamination.
    Jung H; Choi S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Oct; 52(12):1121-1125. PubMed ID: 28738169
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Limitations and challenges in treatment of acute chemical warfare agent poisoning.
    Thiermann H; Worek F; Kehe K
    Chem Biol Interact; 2013 Dec; 206(3):435-43. PubMed ID: 24091052
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dual-Function Metal-Organic Framework as a Versatile Catalyst for Detoxifying Chemical Warfare Agent Simulants.
    Liu Y; Moon SY; Hupp JT; Farha OK
    ACS Nano; 2015 Dec; 9(12):12358-64. PubMed ID: 26482030
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Size-Dependent Catalytic Activity of Palladium Nanoparticles Fabricated in Porous Organic Polymers for Alkene Hydrogenation at Room Temperature.
    Mondal J; Trinh QT; Jana A; Ng WK; Borah P; Hirao H; Zhao Y
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15307-19. PubMed ID: 27258184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.