These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 35735504)
41. Feasibility of fully automated classification of whole slide images based on deep learning. Cho KO; Lee SH; Jang HJ Korean J Physiol Pharmacol; 2020 Jan; 24(1):89-99. PubMed ID: 31908578 [TBL] [Abstract][Full Text] [Related]
42. Weakly supervised detection and classification of basal cell carcinoma using graph-transformer on whole slide images. Yacob F; Siarov J; Villiamsson K; Suvilehto JT; Sjöblom L; Kjellberg M; Neittaanmäki N Sci Rep; 2023 May; 13(1):7555. PubMed ID: 37160953 [TBL] [Abstract][Full Text] [Related]
43. A Deep Learning Model for Cervical Cancer Screening on Liquid-Based Cytology Specimens in Whole Slide Images. Kanavati F; Hirose N; Ishii T; Fukuda A; Ichihara S; Tsuneki M Cancers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267466 [TBL] [Abstract][Full Text] [Related]
44. Publicly available datasets of breast histopathology H&E whole-slide images: A scoping review. Tafavvoghi M; Bongo LA; Shvetsov N; Busund LR; Møllersen K J Pathol Inform; 2024 Dec; 15():100363. PubMed ID: 38405160 [TBL] [Abstract][Full Text] [Related]
45. Multi-Instance Multi-Label Learning for Multi-Class Classification of Whole Slide Breast Histopathology Images. Mercan C; Aksoy S; Mercan E; Shapiro LG; Weaver DL; Elmore JG IEEE Trans Med Imaging; 2018 Jan; 37(1):316-325. PubMed ID: 28981408 [TBL] [Abstract][Full Text] [Related]
46. Predicting breast tumor proliferation from whole-slide images: The TUPAC16 challenge. Veta M; Heng YJ; Stathonikos N; Bejnordi BE; Beca F; Wollmann T; Rohr K; Shah MA; Wang D; Rousson M; Hedlund M; Tellez D; Ciompi F; Zerhouni E; Lanyi D; Viana M; Kovalev V; Liauchuk V; Phoulady HA; Qaiser T; Graham S; Rajpoot N; Sjöblom E; Molin J; Paeng K; Hwang S; Park S; Jia Z; Chang EI; Xu Y; Beck AH; van Diest PJ; Pluim JPW Med Image Anal; 2019 May; 54():111-121. PubMed ID: 30861443 [TBL] [Abstract][Full Text] [Related]
47. A Partial Label-Based Machine Learning Approach For Cervical Whole-Slide Image Classification: The Winning TissueNet Solution Fick RHJ; Tayart B; Bertrand C; Lang SC; Rey T; Ciompi F; Tilmant C; Farre I; Hadj SB Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2127-2131. PubMed ID: 34891709 [TBL] [Abstract][Full Text] [Related]
48. Localization of Nuclei in Breast Cancer Using Whole Slide Imaging System Supported by Morphological Features and Shape Formulas. Kumar A; Prateek M Cancer Manag Res; 2020; 12():4573-4583. PubMed ID: 32606950 [TBL] [Abstract][Full Text] [Related]
49. Analysis of Image Feature Characteristics for Automated Scoring of HER2 in Histology Slides. Mukundan R J Imaging; 2019 Mar; 5(3):. PubMed ID: 34460463 [TBL] [Abstract][Full Text] [Related]
50. Efficient quality control of whole slide pathology images with human-in-the-loop training. Patil A; Diwakar H; Sawant J; Kurian NC; Yadav S; Rane S; Bameta T; Sethi A J Pathol Inform; 2023; 14():100306. PubMed ID: 37089617 [TBL] [Abstract][Full Text] [Related]
51. The impact of different coverslipping methods in the quality of the whole slide images used for diagnosis in pathology. Ferreira D; Vale J; Curado M; Polónia A; Eloy C J Pathol Inform; 2022; 13():100098. PubMed ID: 36268095 [TBL] [Abstract][Full Text] [Related]
52. Ensemble-based deep learning improves detection of invasive breast cancer in routine histopathology images. Solorzano L; Robertson S; Acs B; Hartman J; Rantalainen M Heliyon; 2024 Jun; 10(12):e32892. PubMed ID: 39022088 [TBL] [Abstract][Full Text] [Related]
53. Potential quality pitfalls of digitalized whole slide image of breast pathology in routine practice. Atallah NM; Toss MS; Verrill C; Salto-Tellez M; Snead D; Rakha EA Mod Pathol; 2022 Jul; 35(7):903-910. PubMed ID: 34961765 [TBL] [Abstract][Full Text] [Related]
54. An Efficient and Lightweight Convolutional Neural Network for Remote Sensing Image Scene Classification. Yu D; Xu Q; Guo H; Zhao C; Lin Y; Li D Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32252483 [TBL] [Abstract][Full Text] [Related]
55. Imitating Pathologist Based Assessment With Interpretable and Context Based Neural Network Modeling of Histology Images. Srivastava A; Kulkarni C; Huang K; Parwani A; Mallick P; Machiraju R Biomed Inform Insights; 2018; 10():1178222618807481. PubMed ID: 30450002 [TBL] [Abstract][Full Text] [Related]
56. A deep learning model for breast ductal carcinoma in situ classification in whole slide images. Kanavati F; Ichihara S; Tsuneki M Virchows Arch; 2022 May; 480(5):1009-1022. PubMed ID: 35076741 [TBL] [Abstract][Full Text] [Related]
57. A Methodology of Condition Monitoring System Utilizing Supervised and Semi-Supervised Learning in Railway. Shim J; Koo J; Park Y Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005464 [TBL] [Abstract][Full Text] [Related]
58. AF-SENet: Classification of Cancer in Cervical Tissue Pathological Images Based on Fusing Deep Convolution Features. Huang P; Tan X; Chen C; Lv X; Li Y Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375508 [TBL] [Abstract][Full Text] [Related]
60. 1399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset. Litjens G; Bandi P; Ehteshami Bejnordi B; Geessink O; Balkenhol M; Bult P; Halilovic A; Hermsen M; van de Loo R; Vogels R; Manson QF; Stathonikos N; Baidoshvili A; van Diest P; Wauters C; van Dijk M; van der Laak J Gigascience; 2018 Jun; 7(6):. PubMed ID: 29860392 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]