These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35736070)

  • 1. MaOpy2, a Transmembrane Protein, Is Involved in Stress Tolerances and Pathogenicity and Negatively Regulates Conidial Yield by Shifting the Conidiation Pattern in
    Wen Z; Fan Y; Xia Y; Jin K
    J Fungi (Basel); 2022 May; 8(6):. PubMed ID: 35736070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MaSln1, a Conserved Histidine Protein Kinase, Contributes to Conidiation Pattern Shift Independent of the MAPK Pathway in
    Wen Z; Xia Y; Jin K
    Microbiol Spectr; 2022 Apr; 10(2):e0205121. PubMed ID: 35343772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The transmembrane protein MaSho1 negatively regulates conidial yield by shifting the conidiation pattern in Metarhizium acridum.
    Zhao T; Wen Z; Xia Y; Jin K
    Appl Microbiol Biotechnol; 2020 May; 104(9):4005-4015. PubMed ID: 32170386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Forkhead Box Gene,
    Song T; Li C; Jin K; Xia Y
    J Fungi (Basel); 2024 Aug; 10(8):. PubMed ID: 39194870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MaCts1, an Endochitinase, Is Involved in Conidial Germination, Conidial Yield, Stress Tolerances and Microcycle Conidiation in
    Zou Y; Li C; Wang S; Xia Y; Jin K
    Biology (Basel); 2022 Nov; 11(12):. PubMed ID: 36552240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The homeobox gene MaH1 governs microcycle conidiation for increased conidial yield by mediating transcription of conidiation pattern shift-related genes in Metarhizium acridum.
    Gao P; Li M; Jin K; Xia Y
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2251-2262. PubMed ID: 30631896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of MaSom1, a downstream transcriptional factor of cAMP/PKA pathway, in conidial yield, stress tolerances, and virulence in Metarhizium acridum.
    Du Y; Jin K; Xia Y
    Appl Microbiol Biotechnol; 2018 Jul; 102(13):5611-5623. PubMed ID: 29713793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional analysis of the conidiation pattern shift of the entomopathogenic fungus Metarhizium acridum in response to different nutrients.
    Wang Z; Jin K; Xia Y
    BMC Genomics; 2016 Aug; 17():586. PubMed ID: 27506833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MaAzaR, a Zn
    Zhou J; Wang S; Xia Y; Peng G
    J Fungi (Basel); 2024 Jul; 10(7):. PubMed ID: 39057353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tetracarboxylic acid transporter regulates growth, conidiation, and carbon utilization in Metarhizium acridum.
    Luo Y; Yan X; Xia Y; Cao Y
    Appl Microbiol Biotechnol; 2023 May; 107(9):2969-2982. PubMed ID: 36941435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The
    Song D; Shi Y; Ji H; Xia Y; Peng G
    Front Microbiol; 2019; 10():1946. PubMed ID: 31497008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dipeptidase PEPDA Is Required for the Conidiation Pattern Shift in Metarhizium acridum.
    Li J; Su X; Cao Y; Xia Y
    Appl Environ Microbiol; 2021 Sep; 87(19):e0090821. PubMed ID: 34288712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MaMk1, a FUS3/KSS1-type mitogen-activated protein kinase gene, is required for appressorium formation, and insect cuticle penetration of the entomopathogenic fungus Metarhizium acridum.
    Jin K; Han L; Xia Y
    J Invertebr Pathol; 2014 Jan; 115():68-75. PubMed ID: 24184951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription Factor
    Su X; Liu H; Xia Y; Cao Y
    J Fungi (Basel); 2022 Jun; 8(6):. PubMed ID: 35736077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Ste12-like transcription factor MaSte12 is involved in pathogenicity by regulating the appressorium formation in the entomopathogenic fungus, Metarhizium acridum.
    Wei Q; Du Y; Jin K; Xia Y
    Appl Microbiol Biotechnol; 2017 Dec; 101(23-24):8571-8584. PubMed ID: 29079863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MaNsdD regulates conidiation negatively by inhibiting the AbaA expression required for normal conidiation in Metarhizium acridum.
    Song D; Cao Y; Xia Y
    Environ Microbiol; 2022 Jul; 24(7):2951-2961. PubMed ID: 35384250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The C2H2 Zinc Finger Protein MaNCP1 Contributes to Conidiation through Governing the Nitrate Assimilation Pathway in the Entomopathogenic Fungus
    Li C; Xia Y; Jin K
    J Fungi (Basel); 2022 Sep; 8(9):. PubMed ID: 36135667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MaEng1, an endo-1,3-glucanase, contributes to the conidiation pattern shift through changing the cell wall structure in Metarhizium acridum.
    Dai H; Zou Y; Xia Y; Jin K
    J Invertebr Pathol; 2024 Sep; 207():108204. PubMed ID: 39313093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-terminal zinc fingers of MaNCP1 contribute to growth, stress tolerance, and virulence in Metarhizium acridum.
    Li C; Xia Y; Jin K
    Int J Biol Macromol; 2022 Sep; 216():426-436. PubMed ID: 35809667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The phosphatase gene MaCdc14 negatively regulates UV-B tolerance by mediating the transcription of melanin synthesis-related genes and contributes to conidiation in Metarhizium acridum.
    Gao P; Jin K; Xia Y
    Curr Genet; 2020 Feb; 66(1):141-153. PubMed ID: 31256233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.