BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 35736107)

  • 1. Dynamic Genome-Wide Transcription Profiling and Direct Target Genes of CmWC-1 Reveal Hierarchical Light Signal Transduction in
    Zhang J; Wang F; Liu M; Fu M; Dong C
    J Fungi (Basel); 2022 Jun; 8(6):. PubMed ID: 35736107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The blue-light receptor CmWC-1 mediates fruit body development and secondary metabolism in Cordyceps militaris.
    Yang T; Guo M; Yang H; Guo S; Dong C
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):743-55. PubMed ID: 26476643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome resequencing and transcriptome analysis reveal the molecular mechanism of albinism in
    Zhao Y; Liu Y; Chen X; Xiao J
    Front Microbiol; 2023; 14():1153153. PubMed ID: 37113230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CmVVD is involved in fruiting body development and carotenoid production and the transcriptional linkage among three blue-light receptors in edible fungus Cordyceps militaris.
    Zhang J; Wang F; Yang Y; Wang Y; Dong C
    Environ Microbiol; 2020 Jan; 22(1):466-482. PubMed ID: 31742850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photo morphogenesis and photo response of the blue-light receptor gene Cmwc-1 in different strains of Cordyceps militaris.
    Yang T; Dong C
    FEMS Microbiol Lett; 2014 Mar; 352(2):190-7. PubMed ID: 24484244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoperiodic Responses and Characterization of the Cmvvd Gene Encoding a Blue Light Photoreceptor from the Medicinal Caterpillar Fungus Cordyceps militaris (Ascomycetes).
    Zhang X; Dong X; Song X; Wang F; Dong C
    Int J Med Mushrooms; 2017; 19(2):163-172. PubMed ID: 28436325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DASH-type cryptochromes regulate fruiting body development and secondary metabolism differently than CmWC-1 in the fungus Cordyceps militaris.
    Wang F; Song X; Dong X; Zhang J; Dong C
    Appl Microbiol Biotechnol; 2017 Jun; 101(11):4645-4657. PubMed ID: 28409381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cysteine-Rich Hydrophobin Gene Family: Genome Wide Analysis, Phylogeny and Transcript Profiling in
    Li X; Wang F; Xu Y; Liu G; Dong C
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33440688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of Light-Responsive Gene Regulatory Network for Growth, Development and Secondary Metabolite Production in
    In-On A; Thananusak R; Ruengjitchatchawalya M; Vongsangnak W; Laomettachit T
    Biology (Basel); 2022 Jan; 11(1):. PubMed ID: 35053069
    [No Abstract]   [Full Text] [Related]  

  • 10. Dual Transcriptomics Reveals Interspecific Interactions between the Mycoparasite
    Liu Q; Dong C
    Microbiol Spectr; 2023 Mar; 11(2):e0480022. PubMed ID: 36946736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide transcriptome and proteome analysis on different developmental stages of Cordyceps militaris.
    Yin Y; Yu G; Chen Y; Jiang S; Wang M; Jin Y; Lan X; Liang Y; Sun H
    PLoS One; 2012; 7(12):e51853. PubMed ID: 23251642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Transcriptome Analysis Between a Spontaneous Albino Mutant and Its Sibling Strain of
    Wang F; Liu Q; Zhang J; Liu K; Li K; Liu G; Dong C
    Front Microbiol; 2018; 9():1237. PubMed ID: 29937763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chitinase Is Involved in the Fruiting Body Development of Medicinal Fungus
    Zhang ZJ; Yin YY; Cui Y; Zhang YX; Liu BY; Ma YC; Liu YN; Liu GQ
    Life (Basel); 2023 Mar; 13(3):. PubMed ID: 36983919
    [No Abstract]   [Full Text] [Related]  

  • 14. Light-Exposed Metabolic Responses of
    Soommat P; Raethong N; Ruengsang R; Thananusak R; Laomettachit T; Laoteng K; Saithong T; Vongsangnak W
    Biology (Basel); 2024 Feb; 13(3):. PubMed ID: 38534409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic Responses of Carotenoid and Cordycepin Biosynthetic Pathways in
    Thananusak R; Laoteng K; Raethong N; Zhang Y; Vongsangnak W
    Biology (Basel); 2020 Aug; 9(9):. PubMed ID: 32825642
    [No Abstract]   [Full Text] [Related]  

  • 16. Transcriptome-wide analysis reveals the progress of Cordyceps militaris subculture degeneration.
    Yin J; Xin X; Weng Y; Gui Z
    PLoS One; 2017; 12(10):e0186279. PubMed ID: 29073171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Strain Preservation Methods on Fruiting Body Growth and Metabolite Production by the Medicinal Mushroom Cordyceps militaris (Ascomycetes).
    Liu Q; Wang F; Liu K; Dong C
    Int J Med Mushrooms; 2018; 20(10):1003-1011. PubMed ID: 30806271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. milR4 and milR16 Mediated Fruiting Body Development in the Medicinal Fungus
    Shao Y; Tang J; Chen S; Wu Y; Wang K; Ma B; Zhou Q; Chen A; Wang Y
    Front Microbiol; 2019; 10():83. PubMed ID: 30761116
    [No Abstract]   [Full Text] [Related]  

  • 19. Heat and light stresses affect metabolite production in the fruit body of the medicinal mushroom Cordyceps militaris.
    Jiaojiao Z; Fen W; Kuanbo L; Qing L; Ying Y; Caihong D
    Appl Microbiol Biotechnol; 2018 May; 102(10):4523-4533. PubMed ID: 29594343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosome level assembly and secondary metabolite potential of the parasitic fungus Cordyceps militaris.
    Kramer GJ; Nodwell JR
    BMC Genomics; 2017 Nov; 18(1):912. PubMed ID: 29178836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.