BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35736228)

  • 1. Functional Characterization of the GlcNAc Catabolic Pathway in Cryptococcus deneoformans.
    Ye L; Wang S; Zheng J; Chen L; Shen L; Kuang Y; Wang Y; Peng Y; Hu C; Wang L; Tian X; Liao G
    Appl Environ Microbiol; 2022 Jul; 88(13):e0043722. PubMed ID: 35736228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-acetylglucosamine, the building block of chitin, inhibits growth of Neurospora crassa.
    Gaderer R; Seidl-Seiboth V; de Vries RP; Seiboth B; Kappel L
    Fungal Genet Biol; 2017 Oct; 107():1-11. PubMed ID: 28736299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-acetylglucosamine affects Cryptococcus neoformans cell-wall composition and melanin architecture.
    Camacho E; Chrissian C; Cordero RJB; Liporagi-Lopes L; Stark RE; Casadevall A
    Microbiology (Reading); 2017 Nov; 163(11):1540-1556. PubMed ID: 29043954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the N-acetylglucosamine kinase (Hxk1) in the regulation of white-gray-opaque tristable phenotypic transitions in C. albicans.
    Cao C; Guan G; Du H; Tao L; Huang G
    Fungal Genet Biol; 2016 Jul; 92():26-32. PubMed ID: 27153757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of GIG1, a GlcNAc-induced gene in Candida albicans needed for normal sensitivity to the chitin synthase inhibitor nikkomycin Z.
    Gunasekera A; Alvarez FJ; Douglas LM; Wang HX; Rosebrock AP; Konopka JB
    Eukaryot Cell; 2010 Oct; 9(10):1476-83. PubMed ID: 20675577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The N-acetylglucosamine catabolic gene cluster in Trichoderma reesei is controlled by the Ndt80-like transcription factor RON1.
    Kappel L; Gaderer R; Flipphi M; Seidl-Seiboth V
    Mol Microbiol; 2016 Feb; 99(4):640-57. PubMed ID: 26481444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-acetylglucosamine utilization by Saccharomyces cerevisiae based on expression of Candida albicans NAG genes.
    Wendland J; Schaub Y; Walther A
    Appl Environ Microbiol; 2009 Sep; 75(18):5840-5. PubMed ID: 19648376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The inducible N-acetylglucosamine catabolic pathway gene cluster in Candida albicans: discrete N-acetylglucosamine-inducible factors interact at the promoter of NAG1.
    Kumar MJ; Jamaluddin MS; Natarajan K; Kaur D; Datta A
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14218-23. PubMed ID: 11114181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attenuation of virulence and changes in morphology in Candida albicans by disruption of the N-acetylglucosamine catabolic pathway.
    Singh P; Ghosh S; Datta A
    Infect Immun; 2001 Dec; 69(12):7898-903. PubMed ID: 11705974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Up-regulation of genes involved in N-acetylglucosamine uptake and metabolism suggests a recycling mode of chitin in intraradical mycelium of arbuscular mycorrhizal fungi.
    Kobae Y; Kawachi M; Saito K; Kikuchi Y; Ezawa T; Maeshima M; Hata S; Fujiwara T
    Mycorrhiza; 2015 Jul; 25(5):411-7. PubMed ID: 25564438
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Min K; Naseem S; Konopka JB
    J Fungi (Basel); 2019 Dec; 6(1):. PubMed ID: 31878148
    [No Abstract]   [Full Text] [Related]  

  • 12. N-acetylglucosamine (GlcNAc) triggers a rapid, temperature-responsive morphogenetic program in thermally dimorphic fungi.
    Gilmore SA; Naseem S; Konopka JB; Sil A
    PLoS Genet; 2013; 9(9):e1003799. PubMed ID: 24068964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-acetylglucosamine (GlcNAc) induction of hyphal morphogenesis and transcriptional responses in Candida albicans are not dependent on its metabolism.
    Naseem S; Gunasekera A; Araya E; Konopka JB
    J Biol Chem; 2011 Aug; 286(33):28671-28680. PubMed ID: 21700702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular cloning and analysis of the NAG1 cDNA coding for glucosamine-6-phosphate deaminase from Candida albicans.
    Natarajan K; Datta A
    J Biol Chem; 1993 May; 268(13):9206-14. PubMed ID: 7683645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-acetylglucosamine transporter, Ngt1, undergoes sugar-responsive endosomal trafficking in Candida albicans.
    Hanumantha Rao K; Roy K; Paul S; Ghosh S
    Mol Microbiol; 2022 Feb; 117(2):429-449. PubMed ID: 34877729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two membrane proteins located in the Nag regulon of Candida albicans confer multidrug resistance.
    Sengupta M; Datta A
    Biochem Biophys Res Commun; 2003 Feb; 301(4):1099-108. PubMed ID: 12589826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Characterization of the N-Acetylglucosamine Catabolic Genes in Candida africana, a Natural N-Acetylglucosamine Kinase (HXK1) Mutant.
    Felice MR; Gulati M; Giuffrè L; Giosa D; Di Bella LM; Criseo G; Nobile CJ; Romeo O; Scordino F
    PLoS One; 2016; 11(1):e0147902. PubMed ID: 26808192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of the genes for N-acetylglucosamine kinase and N-acetylglucosamine-phosphate deacetylase in the pathogenic fungus Candida albicans.
    Yamada-Okabe T; Sakamori Y; Mio T; Yamada-Okabe H
    Eur J Biochem; 2001 Apr; 268(8):2498-505. PubMed ID: 11298769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymes of N-acetylglucosamine metabolism during germ-tube formation in Candida albicans.
    Gopal P; Sullivan PA; Shepherd MG
    J Gen Microbiol; 1982 Oct; 128(10):2319-26. PubMed ID: 6296272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-Acetylglucosamine Sensing and Metabolic Engineering for Attenuating Human and Plant Pathogens.
    Ansari S; Kumar V; Bhatt DN; Irfan M; Datta A
    Bioengineering (Basel); 2022 Feb; 9(2):. PubMed ID: 35200417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.