These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35736231)

  • 1. Characterization of rice flour and pastes with different sweeteners for extrusion-based 3D food printing.
    Prithviraj V; Thangalakshmi S; Arora VK; Liu Z
    J Texture Stud; 2022 Oct; 53(6):895-907. PubMed ID: 35736231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Printability and Thermophysical Properties of Three-Dimensional-Printed Food Based on "Cochayuyo"
    Lemus-Mondaca R; Puente-Díaz L; Vásquez-Montaño A; León E; Zura-Bravo L; Ortiz-Viedma J
    Foods; 2024 Jun; 13(12):. PubMed ID: 38928767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the 3D printability of pearl millet flour with banana pulp blends.
    Santhoshkumar P; Raja V; Priyadarshini SR; Moses JA
    J Sci Food Agric; 2024 Jul; 104(9):5588-5602. PubMed ID: 38363095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of different sweeteners on the thermal, rheological, and water mobility properties of soft wheat flour and their application to cookies as an alternative to sugar.
    Jeong S; Kim G; Ryu K; Park J; Lee S
    Food Chem; 2024 Jan; 432():137193. PubMed ID: 37633131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and Textural Characteristics of 3D-Printed Protein- and Dietary Fibre-Rich Snacks Made of Milk Powder and Wholegrain Rye Flour.
    Lille M; Kortekangas A; Heiniö RL; Sozer N
    Foods; 2020 Oct; 9(11):. PubMed ID: 33114227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Printability of Nixtamalized Corn Dough during Screw-Based Three-Dimensional Food Printing.
    Rodríguez-Herrera VV; Umeda T; Kozu H; Sasaki T; Kobayashi I
    Foods; 2024 Jan; 13(2):. PubMed ID: 38254594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of 3D printing conditions and post-printing fermentation on pearl millet fortified idli.
    Raja V; Moses JA; Anandharamakrishnan C
    J Sci Food Agric; 2023 Mar; 103(5):2401-2412. PubMed ID: 36571560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of 3D printability of composite dairy matrix by correlating with its rheological properties.
    Joshi S; Sahu JK; Bareen MA; Prakash S; Bhandari B; Sharma N; Naik SN
    Food Res Int; 2021 Mar; 141():110111. PubMed ID: 33641978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of protein-polysaccharide hybrid gelator system on the material properties and 3D extrusion printability of mashed potatoes.
    Li Y; Cheng Z; Zhang J; Xu S; Cai Y; Ding Y; Lyu F
    J Food Sci; 2024 Apr; 89(4):2347-2358. PubMed ID: 38488735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory mechanisms governing collagen peptides and their 3D printing application for frozen surimi.
    Shi Y; Tu L; Yuan C; Wu J; Li X; Wang S; Chen H; Chen X
    J Food Sci; 2022 Jun; 87(6):2692-2706. PubMed ID: 35590483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Material requirements for printing cookie dough using a fused deposition modeling 3D printer.
    In J; Jeong H; Min SC
    Food Sci Biotechnol; 2022 Jul; 31(7):807-817. PubMed ID: 35720457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of macronutrients printability and 3D-printer parameters on 3D-food printing: A review.
    Pérez B; Nykvist H; Brøgger AF; Larsen MB; Falkeborg MF
    Food Chem; 2019 Jul; 287():249-257. PubMed ID: 30857696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extrusion-Based 3D Printing of Ceramic Pastes: Mathematical Modeling and In Situ Shaping Retention Approach.
    Hu F; Mikolajczyk T; Pimenov DY; Gupta MK
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33670904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insight into the correlations among rheological behaviour, protein molecular structure and 3D printability during the processing of surimi from golden pompano (Trachinotus ovatus).
    Liu Y; Sun Q; Wei S; Xia Q; Pan Y; Ji H; Deng C; Hao J; Liu S
    Food Chem; 2022 Mar; 371():131046. PubMed ID: 34537614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of moisture content on physicochemical properties of extruded waxy and non-waxy rice flour.
    Jongsutjarittam O; Charoenrein S
    Carbohydr Polym; 2014 Dec; 114():133-140. PubMed ID: 25263873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extrudability analysis of drug loaded pastes for 3D printing of modified release tablets.
    Zidan A; Alayoubi A; Coburn J; Asfari S; Ghammraoui B; Cruz CN; Ashraf M
    Int J Pharm; 2019 Jan; 554():292-301. PubMed ID: 30439491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of κ-carrageenan gum on 3D printability and rheological properties of pork pastes.
    Xu J; Fan Y; Chen Q; Sun F; Li M; Kong B; Xia X
    Meat Sci; 2023 Mar; 197():109078. PubMed ID: 36549078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3-D printed meat alternatives based on pea and single cell proteins and hydrocolloids: Effect of paste formulation on process-induced fibre alignment and structural and textural properties.
    Calton A; Lille M; Sozer N
    Food Res Int; 2023 Dec; 174(Pt 2):113633. PubMed ID: 37981359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elucidation of rheological, microstructural, water mobility, and noodle-making properties of rice flour affected by turanose.
    Park Y; Oh IK; Park SW; Ryu K; Lee S
    Food Chem; 2019 Mar; 276():9-14. PubMed ID: 30409667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Hydrocolloids on Rheological Properties and Printability of Vegetable Inks for 3D Food Printing.
    Kim HW; Lee JH; Park SM; Lee MH; Lee IW; Doh HS; Park HJ
    J Food Sci; 2018 Dec; 83(12):2923-2932. PubMed ID: 30506688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.